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Abstract Reinforcement learning is a computational approach that mimics learning
from interaction and supplements the existing supervised and unsupervised learn-
ing methods within the machine learning field. It bases on the mapping of a given
situation to the action, and each action is evaluated by a reward. Of crucial con-
cern, here is that the mapping is performed using suitable policies that correspond
to a set of the so-called psychological stimulus-response rules (associations). How-
ever, in reinforcement learning, we are not interested in immediate rewards, but in a
value function that specifies how good the rewards were in the long run. Reinforce-
ment learning differential evolution is proposed in this study. On the one hand, a Q-
learning algorithm capable of ensuring the good behavior of the evolutionary search
process by explicit strategy exploration is engaged to collect the more prominent
mutation strategies within an ensemble of strategies. On the other, the reinforcement
learning mechanism selects among the strategies incorporated from the original L-
SHADE algorithm using the ‘DE/current-to-pbest/1/bin’ mutation strategy toward
the iL-SHADE to jSO using the ‘DE/current-to-pbest-w/1/bin’ mutation strategies.
Testing the proposed RL-SHADE algorithm was conducted on the well-established
function benchmark suites from the popular CEC special session/competition on
real-parameter single-objective optimization during the last decade, where three dif-
ferent benchmark suites were issued. We expected that the results of the proposed
RL-SHADE algorithm would outperform the results of the three original algorithms
in solving all the observed benchmarks.
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1 Introduction

The classical artificial intelligence (AI), that was valid in the sixties of the last cen-
tury, carried out the intelligence as a product of vast numbers of special purpose
tricks, procedures, and heuristics [1]. Brooks [2], one of the main critics of the so-
called strong AI, established that the intelligent behavior is not disembodied within
computer systems, but it is the result of an interaction of a subject with the environ-
ment. Instead of strong methods, the modern AI stems in learning from interaction
as a main idea underlying all theories of learning and intelligence. This approach is
known under the name of weak AI.

Formally, reinforcement learning (RL) represents a computational approach to
learning from interaction. Human environment interaction represents the basic idea
of natural learning. Children, for instance, discover concepts about the real world
through play that is nothing but an interaction with their environment. Indeed, RL
looks for a solution of how to map a situation to an action in order to maximize the
rewarding signal. Thus, the learner is not told which action to take, but to discover
which actions yield the most reward by trying them [1].

RL belongs to the domain of machine learning (ML) and supplements the already
existing supervised and unsupervised learning methods. Thus, supervised learning
refers to learning from a set of labeled examples provided by a knowledgeable exter-
nal supervisor, while the unsupervised learning is to find structures hidden in a
collection of unlabeled data. Actually, RL combines the trial-and-error well-known
method from the psychology of intelligence [3] with the delayed reward in order to
maximize the value function.

Two issues characterizedRL in the past: learning by trial-and-error and solving the
problem of the optimal control value function and dynamic programming. Trial-and-
error learning goes as far back as 1852 to Alexander Bain [4]. Minsky [5] influenced
the AI community by connecting the trial-and-error learning with AI, including
prediction, expectation, and the basic credit assignmentmechanism.Holland et al. [6]
connected trial-and-error learning in its non-associative formwith genetic algorithms
(GA). He introduced the classifier system that represents the true RL system, which
uses the so-called bucket-brigade algorithm for credit assignment. The GA serves
for evolving classification rules. Later, Klopf [7] revised the trial-and-error RL with
AI. Barto and Sutton [8] showed that RL differs from the supervised learning. On
the other hand, the term optimal control emerged in the late 1950s and refers to
the problem of designing the controller for minimizing or maximizing a measure
of a dynamical system behavior over time [1]. Bellman [9] proposed the class of
methods for solving optimal control problems using dynamic programming. The
same author also introduced discrete stochastic version of optimal control known
as the Markovian decision process (MDP) [10]. Both methods represent essential
elements of modern RL [1].

Recently, evolutionary algorithm’s (EAs) have affected solving the optimization
problems community dramatically [11]. They are stochastic population-based nature-
inspired algorithms that explore the principle of trial-and-error. Their evolutionary
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process mimics the natural evolution founded by Darwin [12] during searching for
a new solution in the search space. Differential evolution (DE) developed by Storn
and Price [13] has gained a lot of attention due to its simplicity of use and the quality
of results obtained especially by applying it to continuous optimization problems.

Two main processes enable the RL to work properly, i.e., exploitation and explo-
ration. Although the processes of the same names can also be found in the EAs
community [14], they have another meaning in the sense of RL. The exploitation in
RL refers to already experienced actions in order to retain reward, while the explo-
ration to make better action selection in the future [1]. The other differences from
the EAs are as follows: EAs do not interact with the environment, and they evaluate
rather the value the solutions in the immediate-term (i.e., reward) than in the long-
term sense (i.e., value function). On the other hand, the RL works with agents having
explicit goals that are capable of sensing their environment and can choose actions
with which they influence their environment. These agents are typical components
of the longer behavior system. In general, this means that they are not necessary
robots acting in physical environments, but also software components working in
programming environments.

The DE algorithm applies static policies (i.e., the so-called mutation strategies)
for exploring the search space. Typically, these do not change during the lifetime
of the evolutionary search process. A fitness landscape normally changes during the
evolutionary runs. Therefore, the strategy used at the beginning does not explore the
search space efficiently when the evolutionary process becomesmatured. In line with
this, the DE that uses ensemble strategies, capable of changing strategies according
to feedback from the search process, has become popular in recent years [15, 16].

The present comparative study captured ten nature-inspired algorithms (also state-
of-the-art ones) that achieved good results on the CEC special session/competition on
real-parameter single-objective optimization by optimizing the benchmark function
suites in the last decade. Indeed, there were three different suites published in the
years 2013 [17], 2014 [18], and 2017 [19], since competitions in 2016 and 2018
were also organized using the benchmark suites published in years 2014 and 2018,
respectively.

This chapter presents in some way a continuation of the already published paper
by Fister et al. [20], where the impact of selecting the benchmark suites on the
estimation of an algorithm’s quality was examined. Authors concluded that the best
algorithm, capable of overcoming the results of the rest of the algorithms in tests
by solving all the benchmark suites, does not exist. In this chapter we go a step
further by assuming that such an algorithm could be found when the RL method is
incorporated within the DE algorithm.

The following algorithms were selected carefully for our study, where both fam-
ilies of nature-inspired algorithms were observed: Thus, the DE and its variants
belong to the EA family, while the artificial bee colony (ABC) [21] and its self-
adaptive variant SSEABC [22] to the swarm intelligence (SI)-based algorithm family.
Among DE variants, the self-adapted versions of DE, like SaDE [23] and jDE [24],
were taken into consideration, to which a family of success-history-based adap-
tive DE (SHADE) [25] were also included. The following improved state-of-the-art
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versions of SHADE-based algorithms were applied in our study: L-SHADE [26],
iL-SHADE [27], jSO [28], and LSHADE-RSP [29].

The structure of the remainder of the chapter is as follows: Sect. 2 deals with
the basic information needed for readers to understand the subjects that follow. The
proposed RL algorithm incorporated within the L-SHADE is illustrated in Sect. 3.
The experiments and obtained results are the subjects of Sect. 4. The chapter is
concluded with Sect. 5, where the performed work is summarized and directions are
outlined for the future.

2 Basic Information

The section is devoted to explain the basic information necessary for following the
matters in the remainder of the paper. Actually, it is divided to two parts: The first
part is dedicated for presenting the basic concepts of RL, while the second describes
the characteristics of the particular nature-inspired algorithms used in our experi-
mental study.

2.1 Concepts of Reinforcement Learning

An essential piece of the RL system is a complete, interactive, goal-seeking agent that
is capable of sensing its environment, on the one hand, and taking actions, selected
by its decision-making process, on the other. The majority of the RL problems can
be formed as a MDP [30], where the agent makes the decision which actions At to
perform in order to gain the maximum reward Rt+1 and senses its environment to
change its Internal state St+1 accordingly (Fig. 1).

Let us notice that the agent is in the State S0 at the beginning. MDP and the
agent generate a sequence of states, actions, and rewards in the following form:
S0, A0, R1, S1, A1, R2, S2, A2, . . . Then, an expected return Gt is evaluated as:

Gt
.= Rt+1 + Rt+2 + · · · + RT

.=
T∑

k=t+1

, (1)

Fig. 1 Interaction of the
agent with the environment
in the Markovian decision
process
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where a sequence of environment interactions is also called episodes. Each episode
is terminated by the Terminal state T .

Beside the agent embodied into the environment, the RL system consists of the
following elements [1]:

• a policy,
• a reward signal,
• a value function,
• a model of the environment.

The policy is a mapping from current states of the environment to actions to be
taken [1]. In psychology, this selection can be considered as a situation to action
rules, or association, while in the RL process, the policy can be a simple function or
demand for extensive computation in the case of a complex search process. However,
the policies may be either deterministic or stochastic regarding their nature.

The reward signal can be either positive in the case of a successful feedback after
performing the action or negative when the feedback was unsuccessful. Actually,
the rewards are analogous to the experience of the pleasure or pain in biological
systems [1]. While the reward signal estimates action in an immediate sense, the
value function evaluates a sequence of actions in the long run. This means that the
value function sums the total amount of reward signals in the longer period and can
predict the rewards accumulated over the future.

The last element of the RL systems is a model of the environment that is optional.
In some RL systems using planning, it simulates the behavior of the environment.
Actually, the model is able to predict the next state by the known current state and the
chosen action. Such systems are known under the name model-based, while those
that do not use the planning are also named model-free.

Let us notice that we employ the model-free RL system in our study (the model-
based systems are discussed here only to supplement a big picture to the readers).
Interestingly, there are two kinds of RL algorithms as follows:

• value-based,
• policy-based.

The former tries to maximize a value function, where an agent expects long-term
rewards of the current states using a specific policy. The latter tries to learn a policy
that will lead to the maximum possible reward in the future for each action taken in
every state [30].

Q-learning is one of the more applicable policy-based RL algorithms proposed
by Watkins [31]. This algorithm applies the following policy for learning how to act
optimally in a controlled MDP:

Q(S, A) = Q(S, A) + α(R + γ · maxaQ(S′, a) − Q(S, A)), (2)

that predicts the optimal action-value for each 〈state,action〉 pair in the long run.
Equation (2) consists of three terms. One of them is the difference between the
discounted maximum action-value and the current action-value. This difference,



48 I. Fister et al.

scaled by the step size α, is then added to the current action-value in order to obtain
the new action-value. The parameter γ in the equation denotes discount value that
weakens the influence of the maximum action-value during the run. The discounted
maximum action-value denotes a feedback from the learning process and, indeed,
represents the so-called associative learning.

The pseudo-code of the Q-learning algorithm is illustrated in Algorithm 1 [1],
from which it can be seen that the algorithm is controlled by three parameters: step

Algorithm 1: Q-learning algorithm.

Algorithm parameters: α ∈ (0, 1], ε > 0;
forall the s ∈ S+ ∧ a ∈ A(s) do /* Initialization */

Q(s,a)=0; N(a)=0;

forall the episode do
Initialize S;
forall the t ∈ T do

A =
{
argmaxnQ(s, a), with probability1 − ε,

random action, otherwise.

〈R, S′〉 = Take action(A);
Q(S, A) = Q(S, A) + α(R + γ · maxa Q(S′, a) − Q(S, A));
S + S′;

size α, discount value γ , and probability ε. After initialization, where the Q action-
values and the number of action calls are initialized, two main loops are started. The
outer for-loop is executed for each episodes, while the inner for-loop for each step
of the episode. In the inner for-loop, either the ε-greedy action is selected with the
probability ε, or the current best policy is applied with probability 1 − ε. The reward
R and the new state S′ are obtained after applying the action A into the environment,
while both variables enter into the Q action-value function. Finally, the state S is
replaced by the new state S′.

2.2 Algorithms in the Study

Ten different stochastic nature-inspired population-based algorithms are compared
with the proposed variants of RL incorporatedwithinDE algorithms.Nature-inspired
algorithms are comprised of two algorithm families: EAs and SI-based. The former
found their inspiration in the Darwinian struggle for existence [12], according to
which the fitter individuals have more chances of surviving and transferring their
good traits into the next generation. The latter mimics the behavior of animals and
insects by performing vital functions to survive (e.g., foraging, reproduction) [32].
Both mentioned behaviors can be treated as an optimization process by Holland et
al. [6].
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Obviously, the better state-of-the-art algorithms appropriate for global optimiza-
tion are observed in the study. Especially, two algorithms of the mentioned families
serve as a foundation for the development of these powerful algorithms, i.e., DE and
ABC. In the remainder of the chapter, both the mentioned algorithms are described
in detail together with their more efficient variants representing the former as well
as the present state-of-the-art algorithms.

2.2.1 Original DE and Its Variants

The original DE emerged in 1995, and various adaptive and self-adaptive variant
of this algorithms have appeared since then. Although its variation operators are
based on well-defined mathematical operations of vector differences, these can be
interpreted in the sense of Darwinianmutation and crossover. Thus, vectors represent
individuals in a population of solutions.

In our study, the following DE variants are considered:

• Original DE [13],
• Self-adaptive DE (SaDE) [23, 33],
• Self-adaptive DE (jDE) [24],
• Success-history-based adaptive DE (SHADE) [25].

Especially, the SHADE algorithm is distinguished in EC community, because
of its conceptual simplicity and implementation integrity. Therefore, it is no wonder
that the majority of variants based on this algorithmwere winners of the CEC special
session/competition on real-parameter optimization in the last decade. In our study,
we are focused on the following ones:

• SHADE with linear population size reduction (L-SHADE) [26],
• Improved L-SHADE (iL-SHADE) [27],
• Single-objective real-parameter optimization algorithm (jSO) [28],
• L-SHADE algorithm with a rank-based selective pressure strategy (LSHADE-
RSP) [29].

In the remainder of the chapter, all the mentioned algorithms are illustrated in
detail.

The Original DE

DEwas developed by Storn and Price [13] and attracted the attention of the evolution-
ary research community quickly by achieving good results especially in continuous
optimization problem solving. Latter, its applicability was widened to solve discrete
and real-world problems, where the algorithm was distinguished by achieving solid
results.

The main characteristic of this EA is the use of the real-valued representation of
solution. The search space is explored by DE using variation operators like mutation
and crossover, while selection ensures that the best vectors in the current population
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are preserved to the next generation in the evolutionary cycle. The original DE mod-
ifies vectors in the population using the so-called mutation strategies that determine
how the search space must be explored. Due to the high number of strategies, a
special notation was proposed in order to describe them. The basic mutation strat-
egy ‘DE/rand/1/bin’, for example, takes the scaled difference between two randomly
selected vectors and adds them to the third vector, in other words:

u(t)
i = x(t)

r0 + F · (x(t)
r1 − x(t)

r2 ), (3)

where the scaling factor F ∈ [0.0, 1.0] determines the rate of modification, the pop-
ulation size NP limits the number of individuals, and the randomly selected numbers
r0, r1, r2 capture values in the interval 1, . . . ,NP ∧ i �= r0 �= r1 �= r2. Effectively,
these random numbers determine the vectors that are then entered into the mutation
strategy.

The crossover parameter CR regulates the number of parameter values that are
included in the operation. In effect, there are two ways of how the parameter values
are handled: binomial or exponential. The binomial crossover selects the parameter
values to the trial vector uniformly from the trial or target vectors. On the other hand,
the exponential crossover is similar to the one- or two-point crossover in classical
genetic algorithms (GA) [34], where the parameters are taken from mutant vector
as long as rand(0, 1) ≤ CR, while all the others from the target vector until the first
occurrence of rand(0, 1) > CR.Mathematically, the binomial crossover is expressed
as:

w
(t)
i, j =

{
u(t)
i, j , rand j (0, 1) ≤ CR ∨ j = jrand,

x (t)
i, j , otherwise,

(4)

where the crossover rate CR ∈ [0.0, 1.0] controls those part of parameter values that
are copied from the mutant vector to the trial solution. Furthermore, the condition
j = jrand ensures that the trial solution w(t)

i differs from the target solution x(t)
i in at

least one element.
The DE selection operator is known under the name ‘one-to-one’ selection,

because the best between target and trial vector is preserved to the next generation.
Mathematically, the selection is expressed as follows:

x(t+1)
i =

{
w(t)

i , if f (w(t)
i ) ≤ f (x(t)

i ),

x(t)
i , otherwise .

(5)

SaDE

DE supports many mutation strategies that are applied according to the problem to
be solved, but knowing which mutation strategy is the best for the particular problem
is far from being discovered easily. A lot of experiments need to be conducted, but
the true answer to the question cannot be found, especially, if the fitness landscape
changes over time (which usually does). This means that the mutation strategy used
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at the beginning of the search process is not necessarily optimal when the process
matures.

Therefore, Qin and Suganthan [23] proposed SaDE capable of changing the two
DE mutation strategies (i.e., ‘DE/rand/1/bin’ and ‘DE/best/2/bin’) depending on
the feedback from the search process. Thus, the specific strategy is selected with
regard to probabilities p1 and p2 = 1 − p1. Initially, both probabilities are set as
p1 = p2 = 0.5, but during the evolutionary run, the proper strategy is selected using
the following equations:

u(t)
i =

⎧
⎪⎨

⎪⎩

x(t)
r0 + F · (x(t)

r1 − x(t)
r2 ), if rand1 ≤ CR ∧ rand2 ≤ p1,

x(t)
i + F · (x(t)

best − x(t)
i ) + F · (x(t)

r0 − x(t)
r1 ), if rand1 ≤ CR ∧ rand2 > p1,

x(t)
i if rand1 > CR,

(6)

where rand1 and rand2 denote random numbers drawn from uniform distribution in
the interval [0, 1] and probabilities p1 and p2 are calculated using the expressions:

p1 = ns1 · (ns2 + nf 2)

ns2 · (ns1 + nf 1) + ns1 · (ns2 + nf 2)
,

p2 = 1 − p1.
(7)

The variables ns1 and nf 1 designate the number of successful and unsuccessful mod-
ifications of trial solution, when the first DE mutation strategy is used, respectively,
and ns2 and nf 2 are the same values by application of the second DE mutation
strategy.

Indeed, the original DE is controlled by three algorithm parameters: scale factor
F , crossover rate CR, and population size NP, which remain fixed during the algo-
rithm’s run. Interestingly, two of these parameters (i.e., F and CR) are self-adapted in
SaDE. Both mentioned parameters are attached to each individual in the population
separately.

For each i-th vector, the scale parameter is modified in the interval Fi ∈ [0, 2]
according to the following equation:

Fi = 2 · N (0.5, 0.3), (8)

where the function N (0.5, 03) denotes a random number drawn from the normal
distribution with mean 0.5 and standard deviation 0.3.

The crossover rate CRi is calculated more sophisticated and needs the presence
of memory CRm that is initialized to value 0.5. The new value of CRi is determined
according to the equation:

CRi = N (CRm, 0.1). (9)

Here, the CRi is assigned to the random number drawn from the normal distribution
with mean of CRm and standard deviation 0.1. Interestingly, each CRi value stays
alive for five generations, during which its successful modifications are recorded.
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After 25 generations, the new CRm value is calculated as an average of recorded CRi

values.
jDE

Similarly as in SaDE,Brest et al. [24] in jDEalso proposed the self-adaptation of scale
factor F and the crossover rate CR that are not hold fixed during the evolutionary
cycle, but are incorporated into the representation of individuals and modified by
variation operators. The individuals in jDE are represented as follows:

x (t)
i = (x (t)

i,1, x
(t)
i,2, . . . , x

(t)
i,D, F (t)

i ,CR(t)
i ).

Indeed, the representation of individuals in jDE is divided into problem variables and
control parameters. While the problem variables are modified using the particular
DE mutation strategy, the control parameters Fi and CRi are modified using the
following two equations:

F (t+1)
i =

{
Fl + rand1 · (Fu − Fl) , if rand2 < τ1,

F (t)
i , otherwise ,

(10)

CR(t+1)
i =

{
rand3, if rand4 < τ2,

CR(t)
i , otherwise ,

(11)

where variables randi for i = 1, . . . , 4 denote random values drawn from uniform
distribution in the interval [0, 1], learning rates τ1 and τ2 affect the speed of learning,
while the lower and upper bounds Fl and Fu limit the boundaries of feasible values
for parameter Fi , respectively.
SHADE

The SHADE algorithm by Tanabe and Fukunaga [25] utilizes the historical mem-
ories MCR and MF to adapt the control parameters CR and F . Interestingly, both
memory variables are vectors denoting elements MCR = {MCRi } and MF = {MFi }
for i = 1, . . . , H that are initially set to 0.5. During the run, the control parameters
are modified w.r.t. the following equations:

CRi = N (MCR,ri , 0.1),

Fi = C(MF,ri , 0.1),
(12)

where function N (μ, σ ) denotes the random value drawn from normal distribution
withmeanμ and standard deviation σ , and function C(μ, σ ) the random value drawn
from the Cauchy distribution of the same parameters μ and σ . In Eq. (12), variable
ri denotes the random value drawn from uniform distribution in the interval [1, H ].

Modifying the historicalmemories depends on success histories SCR and SF main-
taining the number of successfully changed individuals in each generation. Mathe-
matically, the calculation is expressed as:
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M (t+1)
CR,k =

{
meanWA(SCR), if SCR �= 0,

M (t)
CR,k, otherwise,

(13)

M (t+1)
F,k =

{
meanWL(SF), if SF �= 0,

M (t)
F,k, otherwise,

(14)

where k determines those elements in the historical memory that need to be updated.
Initially, this variable is assigned to one and incremented, until k ≤ H , where the
value is reset back to k = 1. The function meanWA(SCR) in Eq. (13) denotes the
weighted arithmetic mean and is calculated as:

meanWA(SCR) =
|SCR|∑

k=1

wk · SCR,k, (15)

where

wk = � fk∑|SCR|
k=1 � fk

, (16)

and � fk is expressed as � fk = | f (u(t)) − f (x(t))|. The function meanWL(SF) in
Eq. (14) represents a weighted Lehmer mean that is expressed as:

meanWL(SF) =
∑|SF |

k=1 wk · S2F,k∑|SF |
k=1 wk · SF,k

. (17)

The SHADE algorithm also utilizes the novel ‘DE/current-to-pbest/1/bin’ muta-
tion strategy expressed as:

v(t)
i = x(t)

i + Fi · (x(t)
pbest − x(t)

i ) + Fi · (x(t)
r0 − x(t)

r1 ), (18)

where a scale factor Fi scales not only a single, but instead two different terms
in the corresponding equation, i.e., social and random component. Here, the social
component is referred to a difference between the randomly selected vector x(t)

pbest

among the top pi · NP vectors in the current population and the target vector x(t)
i ,

while the randomcomponent has the samemeaning as in the ‘DE/rand/1/bin’ strategy.
Let us mention that the pi variable is not fixed, but randomly selected from the
uniform distribution in the interval [pmin, 0.2], in other words:

pi = U (pmin, 0.2) , (19)

where pmin = 2/NP is picked such that the xpbest individual can be selected between
the two best members in the current population.

L-SHADE
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To improve the performance of the SHADE algorithm, it was further enhanced with
the L-SHADE proposed by Tanabe and Fukunaga [26]. This was focused on the
influence of the third DE parameter, i.e., the population size NP, where the linear
population size reduction (LPSR) was introduced to decrease the population size
linearly when the number of generations increases. However, this is not the first
attempt to modify a population size during the evolutionary run. Arabas et al. [35]
proposed the so-called variable population size within GA (GAVaPS) that modifies
a population size according to the feedback from the evolutionary search process,
where the population size can be increased or decreased similarly as in the natural
biological environments.

The LPSR in the L-SHADE algorithm decreases the population size as follows:

NP(t+1) =
⌈(

NPmin − NPinit

MAX_NFE
· NFE + NPmin

)⌉
, (20)

where NPmin is normally set to the smallest feasible value enabling the DE mutation
strategy to be accomplished successfully (e.g., NPmin = 4), NFE denotes the cur-
rent number of fitness function evaluations, NPinit the initial size of population, and
MAX_NFE is referred to the maximum number of fitness function evaluations.

iL-SHADE

Brest et al. [27] proposed iL-SHADE, an improved variant of the L-SHADE, for the
CEC-16 special session/competition on real-parameter single-objective optimiza-
tion. The algorithm incorporated the following improvements against its predeces-
sor:

• Initialization of the historical memories: In place of MCR = 0.5, originally set by
L-SHADE, the corresponding historical memory was initialized as MCR = 0.8 for
each of the H elements. Moreover, at least one element k of the corresponding
historical memories needs to be as MCR,k = MF,k = 0.8.

• Updating the historical memory MCR: In place of the weighted arithmetic mean
function meanWA(SCR), the Lehner mean function meanWL(SCR)was employed in
the calculation of historical memory MCR,k .

• Adapting the valuesCR(t)
i andF(t)

i : These values are adapted regarding thematurity
of the evolutionary search process: The smaller values of those parameters are
favored at the beginning and the higher at the end of the optimization process.

• Adapting the ratio of the top solutions pi used in ‘DE/current-to-pbest/1/bin’muta-
tion strategy: For this calculation, the authors proposed the equation as follows:

pi = pmax − pmin

MAX_NFE
· NFE + pmin, (21)

where pmin and pmax denote the predefinedminimumandmaximum feasible values
of these constants, respectively. As can be seen from the equation, the value pi
increases from pmin toward pmax in each generation linearly.
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Let usmention that all the otherL-SHADEfeatures (e.g., LPSR) remainunchanged
in the proposed iL-SHADE.

jSO

The jSO variant of the L-SHADE extended the original iL-SHADE and was adjusted
to the CEC-17 special session/competition on real-parameter single-objective opti-
mization. The algorithm is distinguished against its predecessor using the following
feature:

• Introduction of the ‘DE/current-to-pbest-w/1/bin’ mutation strategy expressed as:

v(t)
i = x(t)

i + Fwi · (x(t)
pbest − x(t)

i ) + Fi · (x(t)
r0 − x(t)

r1 ), (22)

where

Fwi =

⎧
⎪⎨

⎪⎩

0.7 · Fi , if NFE < 0.2 · MAX_NFE,

0.8 · Fi , if NFE < 0.4 · MAX_NFE,

1.2 · Fi , otherwise.

(23)

Interestingly, Eq. (22) introduced two scale factors Fwi and Fi affecting the amount
of contribution regarding the social and random components, respectively. While
the scale factor Fi acts similarly as in the original L-SHADE, the scale factor Fwi

prefers the smaller changes of the trial’s position at the beginning of the optimiza-
tion process, and, vice versa, the higher changes are preferred at the end of the
optimization process.

Thus, themotivation behind the use of suchmechanism is to increase the population
diversity in latter phases when the one disappears gradually.

Although the changes to the iL-SHADE seem minor, the jSO has improved the
results of the CEC-17 special session/competition on real-parameter single-objective
optimization crucially.

LSHADE-RSP

TheLSHADE-RSPpresents another variant of theL-SHADEalgorithm thatwas pro-
posed for the CEC-18 special session/competition on real-parameter single-objective
optimization by Stanovov et al. [29]. Themain feature of this algorithm is introducing
the ‘DE/current-to-pbest/r/bin’ mutation strategy that replaced the ‘DE/current-to-
pbest/1/bin’ strategy used in the original L-SHADE.Using the proposedDEmutation
strategy, the vectors entering into the random component of Eq. (18) are not selected
randomly, but by considering their ranks, similarly as in GAs [34]. Indeed, the pro-
posed mutation strategy is defined using the following equation:

v(t)
i = x(t)

i + Fi · (x(t)
pbest − x(t)

i ) + Fi · (x(t)
pr0 − x(t)

pr1). (24)

The motivation behind using the selection is to prevail the premature convergence
that typically emerges in conditions of losing the population diversity.
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Let us mention that the ranking selection in GA operates in four steps: (1) sorting
the solutions according to their fitness function values, (2) assigning the correspond-
ing rank values to each individual, (3) calculating the probability of selection, and
(4) applying the proportional selection operator.

In the first step, the individuals are sorted according to their fitness function values
ascendingly. In the second step, the rank values are assigned to the ordering w.r.t.
the following expression:

ranki = k · (NP − i) + 1, (25)

where variable k presents a scaling factor that favors the better solutions by assigning
the higher ranks. In the third step, the probability of selection is calculated for each
solution according to the following equation:

pri = ranki∑NP
j=1 rank j

. (26)

The aim of using the proportional selection operator in the fourth step is to select two
solutions for entering into the mutation strategy proportional to their rank values.

2.2.2 ABC and Its Self-adaptive Variant

SI-based algorithms present an additional family belonging to a class of stochastic
nature-inspired population-based algorithms. Although a huge amount of this class
members have been published recently, only a few can be confronted successfully
with the hardest global optimization problems. On the other hand, the majority of
the newly developed SI-based algorithms prefer spectacular nature inspiration before
introducing their internal novelties. This means that such algorithms bring nothing
new to the research community, because these, typically, present only better or worse
copies of already developed ones. Fortunately, the flood of new nature-inspired algo-
rithms has slowed dramatically after criticism by Sörensen [36].

Anyway, the focus of our study is on the SI-based algorithms that also achieved
good results in solving the global optimization problems. Consequently, we selected
two members of this family as follows:

• the original ABC by Karaboga and Basturk [21],
• the self-adaptive search equation-based ABC (SSEABC) by Yavuz et al. [22].

Interestingly, the ABC is one of the rare case of the SI-based algorithms that also
supports crossover beside the mutation and thus proves how important this operator
is for the efficiency of the results. Interestingly, this operator is applied using a
probability of 1/D, if variable D describes the length of the individuals. On the one
hand, the low probability ensures slow convergence, while on the other, it avoids the
search process becoming stuck in the local optima. In the remainder of the chapter,
the mentioned algorithms are illustrated in detail.
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ABC

The ABC algorithm was proposed by Karaboga and Basturk [21]. Similarly as in
a natural bee colony, ABC also consists of three bee groups: employed, onlooker,
and scout bees. In natural bee colony, the tasks of these bee groups are specific: The
employed bees, for instance, are responsible for visiting the closest food sources
and scanning for the amount of nectar. These then inform the onlooker bees in the
same colony using the so-called waggle dance, which according to the probability of
visiting a food source, select the most appropriate one for foraging. Employed bees
with an empty food source that is normally foraged by employed or onlooker bees
become scouts.

The search process within the ABC algorithm is divided into three phases that
reflect the various roles of the virtual bee groups within the colony, i.e.,:

• employed,
• onlooker,
• scout.

In the employed phase, the employed virtual bees within the ABC algorithm select
the proper food source and determine its nectar amount. Thus, it is assumed that
each food source is occupied by one employed bee. The onlooker virtual bees select
the proper food source based on information obtained from the employed bees.
Finally, the virtual scouts arise when the fitness function values of either employed
or onlooker bees are not improved for a predefined number of generation and are
dedicated for discovering the new food sources.

Similarly as in EAs, the ABC search process also operates in cycles, where the
individuals are evolved and thus improved their traits. However, each cycle is started
with initialization and terminated according the termination condition that determines
when to stop the optimization process. Themaximumnumber of function evaluations
MAX_NFE is typically applied for this purpose.

Individuals in the ABC algorithm are modified w.r.t. the following mutation strat-
egy:

v(t)
i = x(t)

i + φ
(t)
i, j · (x(t)

i − x(t)
k ), (27)

where a scaling factor φ
(t)
i, j is randomly drawn from the uniform distribution in the

interval [−1.0, 1.0], a vector x(t)
k is randomly selected from bee colony, whereby the

following inequality relation i �= k needs to be fulfilled. The probability of visiting
the particular food source by the onlooker bee is expressed as:

pi = f (xi )∑NP
j=1 f (x j )

. (28)

Let us notice that Eq. (27), determining amove of an artificial beewithin the search
space, is actually applied twice in each optimization cycle: (1) for each employed
bee and (2) for those onlooker bees having the probability of visiting the food source
higher than the assigned probability is in Eq. (28). However, only one randomly
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selected element of solution vector is modified using Eq. (27). This means that either
one, or a maximal two, changes are applied to each individual in each generation.
Finally, each individual, fulfilling conditions to become scout, is reinitialized. Actu-
ally, such a scout can potentially ensure for increasing the population diversity.

SSEABC

The SSEABC algorithm emerged in the CEC-16 special session/competition on real-
parameter single-objective optimization andwas proposed byYavuz et al. [22]. Actu-
ally, it utilizes three strategies for exploring the problem search space: (1) determina-
tion of the self-adaptive search equation, (2) selection of the competitive local search,
and (3) increment of the population size. Individuals in this algorithm x(t)

i = {x (t)
i, j } for

j = 1, . . . ,m, and variablem ∈ [1, D] determines the number of modified elements
within the trial vector, are modified using the mutation strategy as follows:

x (t)
i, j = term1 + φ1 · term2 + φ2 · term3 + φ3 · term4, (29)

where

term1 = the origin vector that can be either current, or best, or randomly selected,
term2, term3, term4 = various combinations of the second term in Eq. (27) (e.g.,

(xbest − xr1), (xr0 − xr1), etc.),
φ1, φ2, φ3, = scale factors

The mentioned exploration strategies implemented within the SSABC are imple-
mented as follows: The first strategy maintains a set of available components, from
which the particular terms in Eq. (28) can be constructed. Each successful applica-
tion of the specific component increases its success rate. Then, the components that
have the lowest success rates are excluded from the set.

The second strategy supports two local search heuristics that compete between
each other during the predefined number of fitness function evaluations. The result of
this compete phase is determining the better local search heuristic that is applicable
in a deployment phase. The deployment phase is terminated, when the population
begins to stagnate. However, this condition causes that the compete phase is taking
place again.

The last strategy was inspired by the incremental social learning (ISL) proposed
byMontes De Oca et al. [37] and adds a new individual after a predefined number of
generations to the existing population. However, the new individual x(t)

new is created
w.r.t. the following equation:

x (t)
new, j = x (t)

ini, j + φi, j · (x (t)
best, j − x (t)

ini, j ), (30)

where x(t)
ini denotes the target vector generated randomly and x(t)

best the current best
solution.
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3 The Proposed RL-SHADE

The motivation behind the design and implementation of the proposed RL-SHADE
algorithm was to develop an algorithm that would be able to achieve the best results
on all the CEC benchmark suites for real-parameter single-objective optimization in
the last decade. In line with this, we focused on three state-of-the-art algorithms of
their time that were founded on the same origin.

As eligible candidates for our study, the following algorithms seemed to be the
more appropriate: L-SHADE, iL-SHADE, and jSO. All three mentioned algorithms
based on the original SHADE and were developed in different periods. While the
L-SHADE was the best adapted to the CEC-14 benchmark suite in 2014, the iL-
SHADE achieved brilliant results by solving the same benchmark problems in 2016,
while the jSO was excellent at solving the CEC-17 benchmark suite one year later.
However, in general, no algorithm is suitable to achieve the best results on all the
mentioned benchmarks.

Therefore, the idea is to overcome the posted problem by using the RLmechanism
incorporated into one algorithm that could be suitable to cover the characteristics of
all three mentioned SHADE-based algorithms under the same umbrella. At first, we
need to identify the characteristics (also the exploration strategies) of each particular
algorithm and then apply the RL Q-learning mechanism for adjusting the particular
exploration strategy to different fitness landscapes caused by different benchmark
problems to be solved, in order to achieve the best long-term value.

Obviously, the fitness landscape is changing dynamically, and consequently, this
changing must be followed by an exploring strategy online. For instance, the jSO
strategy of exploring search space is good in one moment, while the L-SHADE one
is better in another. Furthermore, the fitness landscape depends on the benchmark
problem suite. In summary, the RL mechanism enables selecting the more success-
ful strategies during a longer period. Within the proposed RL-SHADE algorithm,
this serves as a mechanism for adapting the exploration search process to the fitness
landscape. Although this adaptation is not sensitive to the rapid changes in the envi-
ronment, we expect that using the RL mechanism would bring long-term benefits as
well.

The strategy of exploring the search space in the SHADE algorithm is not limited
only to the used DEmutation strategy. Indeed, the L-SHADE and iL-SHADE use the
same ‘DE/current-to-pbest/1/bin’, while the jSO the slightly modified ‘DE/current-
to-pbest-w/1/bin’. The main differences are in other components of the basic algo-
rithm, like initialization, or the way of selecting the proper values of parameters Fi
and CRi , or the sizes of the historical memories.

Beside the initialization, the SHADE algorithm consists of three different phases
within the evolutionary cycle that are retained in all the mentioned SHADE variants:

• generation of trial vectors,
• selection of the better between target and trial solutions andmaintaining the success
histories,

• updating historical memories.
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Algorithm 2: RL-SHADE algorithm.
Input: pop_strategy
G = 1, NG = Ninit , A = ∅;
N [a] = 1, Q[a] = 0 for a ∈ [1, K ] ; /* RL-step 1 */
Initialize population PG = (x1,G , . . . , xN ,G ) randomly;
if pop_strategy = lSHADE then

Set all values in MCR , MF to 0.6; H = 5; p = 0.11; /* L-SHADE */
else if pop_strategy = iL − SHADE then

Set all values in MCR to 0.8, MF to 0.5;pmax = 0.2;pmin = 0.1;H = 6; /* iL-SH */
else

Set all values in MCR to 0.8, MF to 0.3; pmax = 0.25;pmin = 0.1;H = 5; /* jSO */

while Termination criteria not met do
SCR = 0, SF = 0, a = pop_strategy;
for i = 1 to N do /* RL-step II */

a =
{
argmaxa=1,...,K Q[a], if rand(0, 1) < 1 − ε,

rand(1, K ) ∧ k �= ord(a) ∧ ¬hold(max_try), otherwise.

ri = Select from [1, H ] randomly;
if a ∈ {iL − SHADE, jSO} then /* iL-SHADE,jSO */

if ri = H then
MF,ri

= 0.9; MCR,ri
= 0.9;

if MCR,ri
=⊥ then /* L-SHADE,iL-SHADE,jSO */

CRi,G = 0;
else

CRi,G = randni (MCR,ri ,0.1);

if a ∈ {iL − SHADE, jSO} then /* iL-SHADE,jSO */
if g < 0.25GMAX then

CRi,G = [max(CRi,G , 0.5)|max(CRi,G , 0.7)];

else if g < 0.5GMAX then
CRi,G = [max(CRi,G , 0.25)|max(CRi,G , 0.6)];

Fi,G = randci (MF,ri
, 0.1);

if a = iL − SHADE then /* iL-SHADE */
if g < 0.25 · GMAX then

Fi,G = min(Fi,G , 0.7);
else if g < 0.5GMAX then

Fi,G = min(F(i,G), 0.8);
else if g < 0.75GMAX then

Fi,G = min(F(i,G), 0.9);

if a = jSO then /* jSO */
if g < 0.6 · Gmax ∧ FiG > 0.7 then

Fi,G = 0.7;

ui,G = Generate trial vector(xi,G , a);
Update Reinforcement Learning(ui,G , a) ; /* RL-step III */

for i = 1 to N do
if f (ui,G ) ≤ f (xi,G ) then

xi,G+1 = ui,G ;
else

xi,G+1 = xi,G ;

if f (ui,G ) ≤ f (xi,G ) then
A = A ∪ xi,G ;SCR = SCR ∪ CRi,G ;SF = SF ∪ Fi,G ;
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Algorithm 2:
while do

Update archive size to |A|;
Update memories MCR and MF (pop_strategy) ; /* Algorithm 3 */
Calculate new NG+1; /* Optional LPSR strategy. */
if NG < NG+1 then

Sort individuals in P according their fitness values and delete lowest NG − NG+1
members;
Resize archive size |A| according to new |P|;

if pop_strategy ∈ {iL − SHADE, jSO} then /* iL-SHADE,jSO */
Update p using: p = pmax−pmin

max_n f es · n f es + pmin;

G++;

The L-SHADE is obtained when the LPSR operation is added to the original
SHADEalgorithm.Obviously, this feature, although slightlymodified, is also applied
in the iL-SHADE and jSO algorithms.

The pseudo-code of the proposed RL-SHADE algorithm is illustrated in Algo-
rithm 2, from which it can be seen that the algorithm is called with an argument
pop_strategy. The argument affects primarily the sizes of historical memories and
their updating process. The first for-loop statement inside the evolutionary cycle
(while-loop) is devoted to the generation of trial vectors, the second for-loop imple-
ments the one-to-one selection and ensures maintaining the success histories, while
the remainder of the algorithm serves for the updating archive solutions and historical
memories (Algorithm 3). Finally, the LPSR algorithm follows.

In the pseudo-code Algorithm 2, the changes in the original SHADE algorithm,
referred to the RL mechanism, are denoted in red. All the other changes represent
an implementation of ensemble strategies and are self-explanatory. Indeed, the RL
mechanism demands three changes in the proposed RL-SHADE algorithm:

• initialization,
• action selection,
• update of the RL structures.

The RL mechanism introduces two vectors: (1) the number of particular strategy
applications N (a) and (2) the Q-values corresponding to each strategy Q(a). In our
study, the ensemble strategies consisted of three strategies (i.e., K = 3) determining
the behavior of the original algorithms, in other words:

a = {lSHADE,iL-SHADE,jSO}.

A variable a is selected for each i th trial vector using the ε-greedy selection method
determining a selected action. Typically, the RL mechanism allows only a single
application of the ε-greedy selected action. In our study, we introduced the parameter
max_tr y enabling the ε-greedy selected action to be used several times before being
replaced (function ‘hold()’). In this case, the ε-greedy selected action has more
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Algorithm 3: Algorithm for updating the historical memories MCR and MF .
Input: strategy
if SCR �= 0andSF �= 0 then

if MCR,k,G =⊥ ormax(SCR) = 0 then
MCR,k,G+1 =⊥;

else
if strategy = lSHADE then

MCR,k,G+1 = meanWL(SCR); /* L-SHADE */
else

MCR,k,G+1 = (meanWL(SCR) + MCR,k,G )/2; /* iL-SHADE,jSO */

if strategy = lSHADE then
MF,k,G+1 = meanWL (SF ); /* L-SHADE */

else
MF,k,G+1 = (meanWL (SF ) + MF,k,G)/2; /* iL-SHADE,jSO */

k = k + 1;
if k > H then

k = 1;

else
MCR,k,G+1 = MCR,k,G ;
MF,k,G+1 = MF,k,G ;

chances to improve its Q-value and becomes the current best policy. The selected
action affects adjusting the parameters Fi and CRi and, consequently, generating the
trial vector. After evaluation of trial solutions, the RL structures need to be updated.
In line with this, the following equation is employed for updating the Q-values:

Q(S, A) = Q(S, A) + α(R + γ · Qmax − Q(S, A)), (31)

where

α = 1

N (A)
, step size,

R = f (xi ) − f (ui)

f (xi )
, reward calculation,

γ = MAX_NFE − NFE

MAX_NFE
, discount value,

Qmax = f (xbest) − f (ui)

f (xbest)
, associative learning.

Interestingly, the step size α, determining the learning rate, decreases in the interval

α ∈
[
1, 1

MAX_NFE

]
, and the discount value γ regulates the influence of associative

learning in the interval γ ∈ [0, 1].
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4 Experiments and Results

The purpose of our experimental work was to show that the following hypothesis
holds: “The RL-SHADE algorithm can outperform the results of the other algorithms
in the study on all the CEC special session/competition on real-parameter single-
objective optimization in the last decade”. A lot of experiments were conducted,
where the characteristics of the proposed RL-SHADE algorithm were analyzed first,
and then an extensive comparative study was performed that tried to accept or reject
the hypothesis set.

In the remainder of the chapter, the structure of the section is as follows: First, the
algorithm setup follows together with summarizing the main features distinguished
by this. Next, the experimental setup describes the characteristics of various bench-
mark suites. Then, measures are illustrated for comparing the quality of the results
achieved by different algorithms. Finally, the obtained results are presented in detail.

4.1 Algorithm Setup

The present study includes those algorithms, whose implementations in C++ pro-
gramming language can be found on the Internet. The algorithm setup used in the
study is presented in Table1, which shows the special features that are implemented
by the particular algorithms. Obviously, the proposed RL-SHADE is also included
in the collection.

Let us mention that the parameter setup of the algorithm is the same as proposed
by the authors of the implemented algorithms. Moreover, all the algorithms were
compiled using the same g++ compiler on Linux Ubuntu 20.04 running on a personal
computer with an AMD Ryzen 7 1700 Eight-Core Processor and 16 GB memory.
Furthermore, all the algorithms were run under the same conditions, e.g., they used
the same termination condition. In this way, we wanted to make the comparative
study as fair as possible.

4.2 Characteristics of the Benchmark Suites

The CEC special sessions/competitions are organized as a part of general CEC in
order to provide the general test bed for comparing the new developed state-of-the-
art nature-inspired algorithms [20]. These benchmarks are typically arisen annually,
and their complexity is increasing from year to year. These competitions include
various types of benchmark problem suites, like: single-objective, large-scale, noisy,
multi-objective, and constrained optimization [38].

This study focuses on the CEC special session/competition on real-parameter
single-objective optimization benchmark function suites. Obviously, several compe-
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Table 2 Function benchmark suites for the CEC special sessions/competitions on real-parameter
single-objective optimization in the last decade

Function CEC’13 CEC’14/16 CEC’17/18

type NF D NF D NF D

Unimodal 5 {10,30,50,100} 3 {10,30,50,100} 2 {10,30,50,100}

Multi-modal 15 {10,30,50,100} 13 {10,30,50,100} 7 {10,30,50,100}

Composition 8 {10,30,50,100} 8 {10,30,50,100} 10 {10,30,50,100}

Hybrid n/a n/a 6 {10,30,50,100} 10 {10,30,50,100}
∑

28 4 30 4 29 4

titions were organized over time. Interestingly, definitions of benchmark functions
as well as results of the particular competitions together with the source codes of
competitive algorithmswere eagerly collected by Prof. Suganthan [39]. He is also the
main driving force of EC for developing the new nature-inspired algorithms capable
of solving the increasingly difficult problems, with which humans are confronted
daily.

Although those special sessions/competitions were organized on an annual basis,
the same benchmark suites were arisen twice only. For instance, the benchmark suite
for the session/competition in the year 2014 [18] arose again in the year 2016, while
the benchmark suite from the year 2017 occurred again in the year 2018. Interestingly,
this CEC special session/competitionwas transformed to the 100-digit challenge spe-
cial session and the competition on single-objective numerical optimization in 2019
and 2020 [40]. Interestingly, the functions in the benchmark suites are implemented
in several programming languages (i.e., MATLAB, C, and Java). This means that
development of the state-of-the-art algorithms is independent on the programming
languages and, therefore, open for wide range of competitors.

Table2 shows characteristics of the observed benchmark suites, fromwhich it can
be seen that they are presented according to the function types and corresponding
issues of CEC special session/competition benchmark suite. Each benchmark suite
is presented with the number of the functions NF and their available dimensions
D. For more information about function types, the interested reader is invited to
look the appropriate literature provided [17–19]. Although the benchmark suites
enable solving the functions of dimensions D = 10, D = 30, D = 50, and D = 100,
only the first two dimensions were observed in our preliminary study due to the
time complexity, while a termination condition for algorithms in tests obeyed the
regulations of the CEC special sessions/competitions that imposes MAX_NFE · D.
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4.3 Measures

Two statistical tests were employed for comparing the results of different algorithms
as follows:

• the Friedman non-parametric,
• the Spearman correlation.

Friedman non-parametric statistical tests are conducted on so-called classifiers,
where each classifier merges the results of a particular algorithm per dimension
of the functions included into the specific benchmark suite. Thus, each classifiers
represents the results in the sense of five statistical measures (i.e., best, worst, mean,
median, and StDev) averaged over 51 independent runs of the algorithm per bench-
mark suite. In summary, the classifier length is 5 × NF, where NF designates the
number of functions in the benchmark suite.

The [41] statistical tests are conducted in order to compare the results of different
stochastic nature-inspired algorithms collected into statistical classifiers. These non-
parametric tests are founded on an analysis of variances by ranks. Thus, the null
hypothesis assumes that themedians between ranks of all algorithms are equal. These
statistical tests are divided into two steps. The first step is devoted to calculation of
the statistics, from which ranks of particular algorithms are determined. In our study,
the higher the rank value, the better the particular algorithm. The second step, which
is conducted only if the posted hypothesis is rejected, demands performing the post-
hoc statistical tests based on the ranks calculated in the first step. Interestingly, the
second step was omitted in our study because the comparison was performed on the
results of the first step (i.e., ranks). The significance level of 0.05 was employed by
performing these tests.

Similarly as Friedman test, the Spearman non-parametric test also starts with an
assumption that statistical classifiers do not correlate (formally written rs = 0). In
other words, it is assumed that a relationship between two classifiers is not linear,
but arbitrarily curved.

Fister et al. [20] proposed the Spearman rank correlation for comparing ranks
of algorithms obtained by optimizing benchmark functions suite X with the same
results obtained by optimizing benchmark function suite Y . In our study, the ranks
are calculated using the Friedman’s non-statistical tests in step one. Let us suppose
that two distributed variables r f and r

′
f are obtained as a result of a Friedman’s test

(also ranking lists). Then, the idea behind using the Spearman correlation is that
when the connection between both non-normally distributed variables r f and r

′
f is

significant, and the algorithm’s rank in rX is the same as in rY .

4.4 Results

In order to accept or reject the hypothesis set at the beginning of the section, three
experiments were conducted, in which we investigated:
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• influence of the parameter pop_strategy,
• influence of the parameter max_try,
• influence of selecting the benchmark suite.

The purpose of the first two experiments was to get an insight into the behavior of the
proposed RL-SHADE. Then, the impact on the results was inspected by selecting
the particular benchmark suite. At the end of the chapter, the obtained results are
also discussed in detail.

4.4.1 Influence of the Parameter pop_strategy

The parameter pop_strategy determines the initial value of the RL-SHADE exploring
strategy and has a crucial impact on the produced results. Beside selecting the initial
strategy, this parameter also affects the initialization of the history memories MCR

and MF , their sizes, and, consequently, the LPSR behavior. Practically, the size of
the history memory in the L-SHADE and the iL-SHADE was set to H = 6, while
in the jSO to H = 5.

Indeed, the results of this experiment are presented as the ranks calculated after
the Friedman non-parametric tests. The ranks of particular algorithms in the test,
obtained by varying the parameter pop_strategy ∈ {L-SHADE, iL-SHADE, jSO},
are presented in Fig. 2, which is divided into two parts according to the dimension
of benchmark functions. Actually, ranks of three original SHADE-based algorithms
(i.e., L-SHADE, il-SHADE, jSO) are compared with three RL-SHADE variants
using three different initial exploration strategies. These were obtained by various
setting of the pop_strategy denoted as ST-1 for pop_strategy = l SH ADE , ST-2
for pop_strategy = i L − SH ADE , and ST-3 for pop_strategy = j SO . Thus,
each part consists of a diagram and a table, where the former illustrates the ranks
of algorithms graphically, and the latter presents the same results numerically. Let
us notice that the best ranked algorithms are denoted in the red colored bars, while
the best RL-SHADE variants in the blue colored bars. The results were obtained by
setting parameter max_tr y = 1.

As can be seen from the figure, there are no significant differences between the
six SHADE-based algorithms by solving the CEC’13 benchmark suite on functions
of dimension D = 10. However, the RL-SHADE using the jSO exploration strategy
(i.e., ST-3) exposed the best results by optimizing the other benchmark suites on
functions of the same dimension. The situation is changed dramatically by solving
the benchmark suites on functions of dimension D = 30. Here, the best ranks overall
were obtained by iL-SHADE for the CEC-13 and CEC-14, while the CEC-17 was
solved the best by the jSO algorithm. The best overall results among the RL-SHADE
variants were exposed by the ST-1 that dominated the ranks of the other algorithm
variants (i.e., ST-2 and ST-3) by solving the benchmark suites CEC-14 and CEC-17.
The ST-2 achieved slightly better rank by solving the CEC-13 benchmark suite.
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4.4.2 Influence of the Parameter max_t r y

The results of the previous experiment actually rejected our hypothesis set at the
beginning of the experimental section. Actually, they showed that there is no RL-
SHADE algorithm that could be ranked higher than the other original SHADE-based
algorithm by solving the benchmark suite on functions of dimension D = 30.

However, introducing the parameter max_tr y could help us to overcome the
problem. The parameter determines how many generations the ε-greedy selected
action is held before being replaced with the current best policy. Indeed, extensive
experiments have shown that holding the ε-greedy formax_tr y > 1 generations can
improve the behavior of the RL-SHADE algorithm crucially. Obviously, the proper
setting of this parameter is the subject of the experimental work.

Although many settings of this parameter were tested during the experiments,
the setting max_tr y = 4 was distinguished by the quality of the obtained results.
Therefore, the ranking of the algorithms in the test is presented in Fig. 3 using the
mentioned setting.

Interestingly, the outline of the figure is similar as in the previous test: Ranks
of the same algorithms are presented by two observed dimensions in graphical and
numerical form.

As can be seen from the presented ranks of the algorithms by solving all the
benchmark suites on functions of dimension D = 10, the overall best ranked was

Fig. 2 Influence of the parameter pop_strategy
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Fig. 3 Influence of the parameter max_tr y

the ST-1 algorithm (i.e., RL-SHADE using the lSHADE exploration strategy). The
situation was even improved by optimizing the benchmark suites on functions of
dimension D = 30, where again the best ranked algorithm on CEC-14 and CEC-17
was the ST-1 variant of the RL-SHADE. On the CEC-13 benchmark suite, however,
the ST-2 variant was better.

4.4.3 Influence of Selecting the Benchmark Suite

The purpose of this experiment was to investigate the influence of the benchmark
suite selection on the ranking of the particular algorithm in tests. In line with this,
the original ranking of ten stochastic nature-inspired population-based algorithms
as obtained by Fister et al. [20] was compared with refined ranking considering
also the results of the proposed RL-SHADE. Obviously, the best variant of the RL-
SHADE (i.e., RL-SHADE using the lSHADE exploration strategy denoted as ST-1)
was considered in the experiment.

The ranking of the algorithms obtained by optimizing the CEC benchmark suites
of dimension D = 10 is depicted in Fig. 4. The latter is divided into the original
ranking as proposed by Fister et al. [20] and the refined ranking by including the
RL-SHADE algorithm. Both rankings were illustrated graphically and numerically,
while the best algorithm was presented as red colored bars in the diagrams.
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Fig. 4 Comparing the results of the original versus the refined study (D = 10)

The original study revealed that none of the algorithms is capable of solving all
the benchmark suites at best ranks in general. The L-SHADE was indeed the best
ranked algorithm by solving the benchmark suites CEC-13 and CEC-14, but the
jSO is performed better at the benchmark suite CEC-17. However, if considering the
results of the RL-SHADE, it can be concluded that this algorithm performed at best
ranks at all the benchmark suites.

The results of the algorithms by optimizing the benchmark suites on functions of
dimension D = 30 are illustrated in Fig. 5.

Here, the fact revealed by Fister et al. [20] is again valid for the dimension of
functions D = 30. Actually, the iL-SHADE achieved the best rank by optimizing
the CEC-13 and CEC-14 benchmark suites, while the jSO was the best ranked by
solving CEC-17 benchmark suite. Contrarily, after the proposed RL-SHADE was
included into the ranking, this one became the best ranked algorithm in general.

In the next experiment, we were interested in how the selection of the benchmark
influenced the ranking of the particular algorithm. Consequently, we combined the
ranks obtained after the Friedman non-parametric tests for all observed function
dimensions according to different benchmark suites into classifiers. These classifiers
were entered into Spearman correlation tests.
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Fig. 5 Comparing the results of the original vs. the refined study (D = 30)

Fig. 6 Spearman correlation tests with corresponding correlation matrix based on the results of
optimizing the benchmark suites of D = 10 and D = 30

The results of the Spearman tests are presented in Fig. 6 in the form of a correlation
matrix.
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Figure is again divided into a diagram and a table representing the same results
in graphical as well as numerical form.

The diagram in thefigure shows that the relationship between rankings obtained by
optimizing the CEC-14 and CEC-17 was strongly correlated (Spearman correlation
coefficient equaled rs = 0.97). Relationships between the ranks CEC-13 - CEC-14
(rs = 0.90) and CEC-13 - CEC-17 (rs = 0.87) showed as little smaller, but still
significant.

4.5 Discussion

The main hypothesis asserted in our study was that an RL-SHADE algorithm exists
which is the best ranked on all ranking lists obtained after the Friedman non-
parametric tests on the results of optimizing the various CEC benchmark suites.
Experimental results of ranking the eleven stochastic nature-inspired population-
based algorithms in the refined study, illustrated in Figs. 4 and 5, confirmed that
the proposed RL-SHADE (precisely the RL-SHADE using the lSHADE exploration
strategy) is the best ranked algorithm in all the observed ranking lists by solving the
problems of dimensions D = 10 and D = 30. This means that the hypothesis can
be accepted for such problem dimensions. However, to expand the same hypothesis
to other problem dimensions, additional effort must be made in the future.

The results of the Spearman correlation tests need to be analyzed in order to show
how the rankings of the other algorithms in ranking lists are changed w.r.t. selec-
tion of the benchmark suite. In this sense, we can assert that no crucial differences
exist between testing the newly developed stochastic nature-inspired population-
based algorithms. The better ranked algorithms according to solving the CEC-14
benchmark suite gained a similar rank at solving the CEC-17 benchmark and vice
versa. The phrase ‘similar rank’ in the last statement is used intentionally, because
the phrase ‘equal rank’ could be used if the Spearman correlation coefficient would
achieve the value rs = 1.

Although we obtained values less than one, these are still very high (statistically,
they might even not differentiate from one). Consequently, one can observe only
little changes in the ranking of a particular algorithm on different ranking lists. For
instance, let us take the ranking lists in Table5c into consideration. There, the iL-
SHADE is the best ranked algorithm by solving the CEC-14 benchmark suite, while
the jSO is the best ranked by solving CEC-17 benchmark suite. This fact can be
explained by the No-Free-Lunch theorem by Wolpert and Macready [42] on the one
hand, and the stronger adaptation of both algorithms to the different CEC benchmark
suites on the other.

From Figs. 4 and 5, it can be seen that four algorithms achieved the best ranks
by optimizing the CEC-13 benchmark suites on functions of dimension D = 10.
This means that this benchmark suite is an easy task for the state-of-the-art algo-
rithms nowadays. Therefore, this fact should be considered by the developer of the
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new nature-inspired algorithms searching for the test bed for their new developed
algorithms.

5 Conclusion

Looking for a general problem solver that could be capable of solving all classes of
problems has been the eternal desire of many researchers in the past. Obviously, we
did not pursue this goal that is normally impossible to be reached due to the NFL the-
orem. Indeed, in the study, we searched for an algorithm that could be able to solve all
benchmark suites issued by the CEC special session/competition on real-parameter
single-objective optimization in the last decade. In line with this, we selected the
better state-of-the-art SHADE-based algorithms, identified their exploring strate-
gies, and incorporated these under the umbrella of the RL mechanism. The result of
this integration was the RL-SHADE algorithm that uses a Q-learning algorithm for
selecting the successful exploration strategy of discovering the search space.

The purpose of our experimental work was to show that the proposed RL-SHADE
algorithm is able to be the first ranked on the different ranking lists created by
optimizing the CEC benchmark suites on functions of dimensions D = 10 and D =
30. The results of the refined study showed that the goal can be achieved with the
RL-SHADE algorithm using the lSHADE exploration strategy.

There are many directions for the future work, among which, obviously, verifi-
cation of the RL-SHADE algorithm on the CEC benchmark suites with functions at
higher dimensions is the most urgent to be realized. Applying the algorithm to other
problem classes remains another direction for the future.
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