®

Check for
updates

Procedural Content Generation of Custom
Tower Defense Game Using Genetic Algorithms

Vid Kraner, Iztok Fister Jr., and Lucija Brezocnik &)

Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroska cesta
46 2000 Maribor, Slovenia

{iztok.fisterl,lucija.brezocnik}@um.si

Abstract. Inthe present day, itis difficult to imagine the development of computer
games without the use of artificial intelligence. We see it utilized for gameplay,
players modeling, playtesting, or content generation. In this paper, we focused on
the content generation of a custom Tower Defense game named Save the Sheep.
The Tower defense game is a strategic game, which was, in our case, proposed in
a non-violent way. We generated key building blocks of the game with a genetic
algorithm, i.e., a game map, unit placement, and a waves system. The final Tower
Defense inspired game was implemented in the Unity game engine. The results
show that by applying genetic algorithms, it is possible not only to generate content
that makes the game more complex, but also more challenging and interesting for
players.

Keywords: Evolutionary algorithms - Genetic algorithm - Procedural content
generation - Tower Defense

1 Introduction

One would think that Artificial Intelligence (Al) and its utilization in computer games
(also known as Game Al) has a relatively long history, but that is not the case. Interest-
ingly, researchers and the game industry have rarely collaborated in the past, although
this started to change when Al was implemented in board games like Chess and Go [12].
Recently, more and more researchers have begun following the new movement [10, 11,
15] where they focus on using Al for the design and production of games. The latter also
includes Procedural content generation (PCG), which is one of this paper’s main topics.

PCG is an area of Game Al that has lately seen a tremendous growth in interest
[16]. PCG comprises methods for generating game content like levels, maps, textures,
stories, items, quests, music, weapons, vehicles, characters, and also game rules [16].
Such an approach can greatly affect the game’s replay ability since it provides the user
a new adventure every time [12]. PCG could be achieved via multiple methods, but in
this paper, we will focus only on one subset of evolutionary algorithms named genetic
algorithms (GA).

The Tower Defense game characterizes as a strategy computer game and was first
introduced in the 1990s [1]. Until now, researchers applied PCG to the Tower Defense

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
I. Karabegovi¢ (Ed.): NT 2021, LNNS 233, pp. 493-503, 2021.
https://doi.org/10.1007/978-3-030-75275-0_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-75275-0_54&domain=pdf
https://doi.org/10.1007/978-3-030-75275-0_54

494 V. Kraner et al.

Game genre, but they either used PCG to generate levels [13], generate paths and monster
sequences [4], or generate road maps, tower locations, and monster sequences [9].

This work presents the design, implementation, and testing of a custom nonviolent
Tower Defense inspired game named Save the Sheep. The game was first sketched with
respect to its non-violent nature. The Blender tool was used to produce and animate
proposed 3D models, which were later imported to the Unity game engine. To optimize
the key building blocks of the game, we utilized GA [8]. Thus, the primary missions of
this paper are:

e to present a custom non-violent Tower Defense inspired game named Save the Sheep,

e to demonstrate which building blocks of the custom Tower Defense game can be
optimized using a genetic algorithm,

e to show that procedural content generation of the custom Tower Defense game creates
solvable and more complex game levels, and

e to show that procedural content generation can provide more interesting game for
players.

2 Fundamentals of Tower Defense Games

Every Tower Defense Game consists of the following main components: Map Genera-
tion, Unit Placement, the Waves System, and the Reward System. The map of the game
includes restrictions for where the player can build towers and also determines the path
for the units. The tower limitations and the complexity of the path influences the level’s
difficulty. Unit or Tower Placement is an essential mechanism in a Tower Defense Game,
which requires a strategy for arranging the towers and using resources. Usually, towers
have different attributes which define different types of towers and bring their own depth
to the game. The Waves System is responsible for the deployment of enemy units on
the map which closely relate to the types of towers and their attributes. Their mutual
balance is crucial for the course of the game and for the game’s difficulty, by defining
both the time between waves and wave composition. Lastly the Reward System serves
developers by creating more content for players to explore and at the same time making
a more challenging game. A common implementation of the Reward System is where
the player is, by completing levels, rewarded special game resources, which he/she can
spend to purchase upgrades.

3 Design and Implementation of the Save the Sheep Game
The development of the Save the Sheep game consisted of the following steps:

sketching the plot of the game,

identification of the main game elements,
game implementation in Blender and Unity,
development of a modified genetic algorithm,

Procedural Content Generation of Custom 495

e optimized map creation,
e optimized unit placement,
e development of a waves system.

All steps are depicted in the following subsections.

3.1 Sketching the Plot of the Game

When coming up with an idea for the Save the Sheep game, and because of the general
belief that games encourage violence, we decided to set the theme of the game a little
differently [8]. The goal of our game, unlike in classic Tower Defense games, is to make
sure that the opponent’s units reach the end of the path as seen in the sketch in Fig. 1.
In the game, we have the role of a farm manager who wants to bring his herd of sheep
safely to the barn. The sheep slowly lose energy during their way back. The player’s
job is to protect the sheep by setting up towers. The towers are in the shape of a farmer
feeding the sheep with hay, a farmerette giving the sheep water and a speed boost, and
a dog barking at the sheep to herd them towards the barn.

NOTES

- creeps should come to path end
B - creeps slowly lose heelth
crl 1 1] ~Howers oiVe health 1o creeps
- .‘_’J:- _- when_creep cores. fo-end—+ 5%
Aol g Uj"lth creep dlé T
s END 3
i : A
2 i LN TOWERD:
e gy D
= cooi'&;ho»{'£5 wintrix e h
- FMU\ betweeh obsfacles N +_HP -r °')'
T Eewer bases P — ﬂL big-Tange
- <oize >dfFeulties oL b medivm speed
CREEPS. &t Wg "4 speed — bark
E $ —medium Yonge——
Fost

”cm !Fiﬂ‘f

stm'uiwirq{-e ,?,,,,v - WP & dapeed = witker
more _difficulties 2 small range
! slow

Fig. 1. Sketch of the first game idea.

3.2 Identification of the Game Elements

In our game, we identified three game elements to be optimized with GA. These elements
are maps, unit placements, and waves. When implementing our game, we decided to
exclude the Reward System, as its primary purpose is to increase the player’s interest in

496 V. Kraner et al.

the game. In our case, we wanted to achieve this by using GA for generating building
blocks.

In the following subsections, we present, in-detail, how GA utilization was carried
out by providing technical descriptions and game examples.

3.3 Game Development in Blender and Unity

We used the Unity [14] Game Engine and the 3D modeling tool Blender [2] to implement
the game. With the help of Blender, we first modeled 3D models for towers and the
opponent’s units. We decided for a low polygons graphic style, which is faster both to
design and also later to run. For all 3D models, we first created a mesh and an armature
and afterwards textured them. With the help of armature, we created the main animations
and tested the models. Afterwards we imported all of the 3D models with textures and
animations into Unity, which took care of assigning the correct material and recognized
the animations of all models. Then, in Unity, we assigned an animation controller, which
takes care of the animation and the transition between individual animations, to each of
the models. The main mechanics of the game were implemented using C# scripts in the
Unity Game Engine.

3.4 Development of a Modified Genetic Algorithm

The Genetic Algorithm is part of the largest subset of the evolutionary algorithms [5].
John Holland formulated the basic idea in 1975 [7], and later, with the help of Goldberg
[6] and De Jong [3], this idea became a classic genetic algorithm. It is a metaheuristic
and mimics biological evolution with operations like selection, crossover, and mutation.
In our paper, the classic GA was modified to use it for the generation of the game key
building blocks. The pseudocode of the modified GA is presented in Algorithm 1.

Algorithm 1 Pseudocode of the modified GA for the game elements formation
1: initpopulation();
2: evaluate population();
3: sort individuals in population();
4: while termination condition not met do
5: elitist selection();
6: roulette wheel selection();
7: single point crossover();
8: mutation();
9: end while

3.5 Optimized Map Generation

Map generation begins by defining a grid of coordinates matching the size of the map.
First, the coordinates at the start and end of the map path are validated. If set, they must
be on the edge of a map, otherwise they are chosen randomly. The map genotype consists
of bit values of map size. Therefore, a map with a width of 5 and a height of 4 has 20 bit
values. A bit value of 1 means that there is an obstacle at that coordinate. The genotype
of such a random map can be 11000111100010010001.

Procedural Content Generation of Custom 497

It’s phenotype is shown in Fig. 2, where the gray areas of the map are obstacles. If
the example above had the beginning of the path at (2, 0) and the end of the path at (0,
2), then the phenotype of such a map in the game would look like the map in Fig. 3.
There, bright green tiles represent the start of the path, brown tiles are the path itself and
the house is the end of the path. Green raised platforms represent obstacles.

The parameters of the genetic algorithm for generating the map were adjusted through
testing and set as shown in Table 1. The parameter that determines the obstacle probability
was set at 62%. When the algorithm finds the best individual, the shortest path between
the start and the end is found between obstacles. If the path does not exist, the algorithm
is restarted. The path found is important later for both optimizing surfaces for building
towers as well as for moving sheep.

(0,0) | (0,1) | (0,2) | (0,3) | (0,4)

(Lo | (1,1) | (1,2) | (1,3)] (1,4)

(2,00 | (2,1) | (2,2) | (2,3) | (2,4)

(3,0) | (3,1) | (3,2) | (3,3) | (3,4)

Fig. 2. Abstract example of a 5 x 4 map.

Fig. 3. Example of a 5 x 4 map.

Table 1. Parameters for map generation GA.

Population size | Elitism | Mutation probability | End condition 1 | End condition 2

500 5 20% Fitness repeats 5 | Generations number
times over 50

Random Genes
Genes are randomly set for each individual of the GA population. The function that
defines if genes are obstacles is passed to the algorithm as a parameter. The function

498 V. Kraner et al.

returns a value of 1 if a randomly generated number between 0 and 1 is less than the
obstacle probability. For example, if the probability of the obstacle is 62% and the
randomly generated number is 0.45, the function returns a 1 (0.45 is less than 0.62).

Fitness Function

The main goal of the fitness function for generating a map is to give a high score to the
map which has a path between the start and the end through randomly placed obstacles.
In the implementation of the fitness function, we first check if any of the obstacles are at
the start or end of the path. In this case, we return a fitness of 0, otherwise we increase
the fitness of the map. We then check to see if there is a path from start to finish. If the
path exists, we give the map a high score. Otherwise, if the path does not exist, the map
is assigned a proportional fitness of the closest distance to the end of path. To avoid an
incorrect path, we reduce the fitness if the path is diagonally connected to the end of the
path.

3.6 Optimized Unit Placement

Optimizing the locations for tower placement begins, when the map with an available
path is generated. We name these locations tower bases. The genotype of tower bases
consists of bit values whose size is the number of obstacles on the map. This basically
means that towers can be built only on map obstacles. For example, a map with 8
obstacles would then have 8 bit values, where value 1 means that the tower can be built
on that obstacle. The random genotype for the previously presented 5 x 4 map could be
00001011. Its phenotype is shown in Fig. 4, where tower bases are presented by gray
circles.

Fig. 4. Example of a 5 x 4 map with tower bases.

GA is also used for tower base optimization. Its parameters are presented in
Table 2. The algorithm also requires a parameter for the number of tower bases we
want to have on the map. For example, in Fig. 4 this would be 3. This parameter plays
arole in calculating tower base possibility or with other words, a chance that the bit of
genotype has a value of 1. The possibility is calculated by dividing a specified number
of tower bases with a number of obstacles.

Procedural Content Generation of Custom 499

Table 2. Parameters for optimized unit placement.

Population size | Elitism | Mutation probability | End condition 1 | End condition 2

100 4 5% Fitness repeats 5 | Generations number
times over 50

Fitness Function

The fitness value of a genotype is calculated by checking tower bases on a previously
generated map. This is done by allocating tower bases specified in genotype to the
obstacles on the map. For each tower base, we then inspect the surroundings within a
range of two tiles. Each tower base has values for minimum distance to the path, index
of the nearest path tile, and impact value. The impact value represents how many path
tiles are in the 1 tile range. For a better understanding, the data we track is presented
once again on the already known example of a 5 x 4 map in Fig. 5. From the acquired
data, the fitness is then calculated. High fitness is determined by the number of tower
bases near the path, the even distribution of tower bases over the path and high-impact
tower bases.

Fig. 5. Example of a5 x 4 map with tower bases and their details.

3.7 Development of a Waves System

The wave system is optimized for each wave individually, according to the current
number of waves and the number of total waves. With optimization, we are trying
to achieve fewer units of easy difficulty in the first waves, and later more units with
harder difficulty. The genotype consists of two real numbers. The first represents the
difficulty value and the second the number of units in the wave. The parameters of
the genetic algorithm are presented in Table 3. Furthermore, the optimization process
requires additional difficulty level parameters. A level is given for each of the difficulty
units, where the default value for the easy unit is 50%, for the medium unit 30%, and
20% for the hard unit.

https://doi.org/10.1007/978-3-030-75275-0_fig5

500 V. Kraner et al.

Table 3. Parameters for optimized waves system.

Population size | Elitism | Mutation probability | End condition 1 | End condition 2

50 2 10% Fitness repeats 5 | Generations number
times over 50

Fitness Function

Unlike previous fitness functions, in this algorithm, an individual first receives a certain
fitness, which then decreases according to the deviation from the appropriate difficulty
value. Fitness is calculated with Eq. (1).

_ |scry, — scry| 0
scrm + (1 —wp)
where:
f — fitness of the individual,
scrm — appropriate value of wave difficulty,
scrw — the actual value of wave difficulty,
Wp — wave progress.

4 Experiments and Results

After a successful generation of the key building blocks of the game with GA, we con-
ducted an experiment to demonstrate its effect on the game. The following subsections
focus on a comparison of the game’s fundamental building blocks creation with and
without applied optimization. All experiments were performed on a 15 x 10 map with
the same instance of the random number generator; therefore, we got the same optimiza-
tion result, despite running the experiment multiple times. After the first round of the
experiments, we gave the game to five gamers who graded it and provided feedback.

4.1 Map Creation With and Without Optimization

Generating a map without optimization leads to a map where obstacles are placed ran-
domly, and the path between start and end almost certainly doesn’t exist. In Fig. 6, we
see a comparison between the map we took from the initial random GA population and
a map that is a final optimization result. When testing different parameters of the algo-
rithm, we found that the biggest problem for an incorrect solution is the obstacle rate
parameter. The algorithm could be improved by choosing a more suitable version for
the crossover which would mix the genetic code less drastically.

4.2 Unit Placement With and Without Optimization

Generating random positions for tower bases often leads to unsolvable game levels. This
is mainly due to two reasons, the first is an uneven distribution of tower bases, and the

Procedural Content Generation of Custom 501

Fig. 6. Randomly generated map without optimization (left) and with optimization (right).

second is the tower base’s distance from the path. In contrast to the classic implementation
of Tower Defense games, where the uneven distribution of towers is not an obstacle, this
is crucial in our game. The comparison between random and successfully optimized
solution is presented in Fig. 7. With our optimization, we ensured that the vast majority
of game levels are solvable.

Fig. 7. Positions of tower bases without optimization (left) and with optimization (right).

4.3 Waves System With and Without Optimization

Among the implemented optimizations, the optimization of the wave system was the
most difficult one. The main reason behind this lies primarily in the complexity of this
system. The main goal of wave system optimization is the appropriate difficulty for the
current state of the game. The difficulty of a wave is influenced by several factors, such
as the attributes of the units, the number of units, the time/distance between the units,
the time until the next wave, and the amount of a player’s resources. We had challenges
primarily with the implementation of the appropriate fitness function to satisfy the first
four previously mentioned factors. In Fig. 8 we can observe both a non-optimized system,
which is a predictable system where the difference in difficulty is only an increase in
the number of units, and an optimized system, where each wave is optimized separately
according to the current completed waves.

502 V. Kraner et al.

Fig. 8. Fourth wave of a game with a wave system without optimization (left) and with
optimization (right).

4.4 Gamers Feedback

‘We gave the game to five independent gamers with the purpose of providing us with some
feedback. The chosen gamers did not know each other, so they did not communicate
during the testing, which served our goal of getting as accurate data as possible. They
first had to play the game without the optimization, followed by the game where we
optimized the game’s key building blocks. In the end, they had to provide us with an
overall opinion of the game, and judge if the optimized game seemed more interesting.

Out of five independent players, none of them said that the non-optimized game was
better. Furthermore, all of them said that the optimized game was much more challenging
and interesting to play, and would choose it over the non-optimized version.

5 Conclusion

This paper showed how we approached the design and implementation of a custom
Tower Defense inspired game named Save the Sheep, which was developed in the Unity
game engine. For an optimal generation of the game’s key building blocks, i.e. a game
map, unit placement, and waves system, we utilized a genetic algorithm. The results
demonstrated that applying such an approach enhances the game’s creation process and
makes the final game more complex. The game was also tested by five independent
gamers, who stated that the proposed optimized game was much more challenging and
interesting to play than the non-optimized version.

We want to utilize other evolutionary algorithms to optimize the key building blocks
of the game in the future. To tackle multiple targets in game development, i.e. various
targets for map generation, we intend to use multi-objective evolutionary algorithms.
Furthermore, the presented approach could also be extended to other games.

References

1. Avery, P, Togelius, J., Alistar, E., Van Leeuwen, R.P.: Computational intelligence and tower
defence games. In: 2011 IEEE Congress of Evolutionary Computation (CEC), pp.1084-1091.
IEEE (2011)

2. Blender.: Official Blender Website (2020). https://www.blender.org/. Accessed 05 Dec 2020

https://www.blender.org/

10.
11.
12.
13.

14.
15.

16.

Procedural Content Generation of Custom 503

. De Jong., K.A.: Analysis of the behavior of a class of genetic adaptive systems. Technical

report, University of Michigan, USA (1975)

Du, Y, Li, J., Hou, X., Lu, H., Liu, S.C., Guo, X., Yang, K., Tang, Q.: Automatic level gen-
eration for Tower Defense games. In: 2019 IEEE 3rd Information Technology, Networking,
Electronic and Automation Control Conference (ITNEC), pp. 670-676. IEEE (2019)
Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Berlin (2015)
Goldenberg, D.E.: Genetic algorithms in search, optimization and machine learning (1989)
Holland, J.H.: Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence (1975)

. Kraner, V.: Using evolutionary algorithms for generation of key elements of Tower Defence

game using Unity game engine. Master’s thesis, University of Maribor, Faculty of Electrical
Engineering and Computer Science (2020)

Liu, S., Chaoran, L., Yue, L., Heng, M., Xiao, H., Yiming, S., Licong, W., Ze, C., Xianghao,
G., Hengtong, L., et al.: Automatic generation of Tower Defense levels using PCG. In: Pro-
ceedings of the 14th International Conference on the Foundations of Digital Games, pp. 1-9
(2019)

Mateas, M.: Expressive Al: games and artificial intelligence. In: DiGRA Conference (2003)
Nareyek, A.: Game Al is dead. Long live game Al! IEEE Intell. Syst. 22(1), 9-11 (2007)
Risi, S., Preuss, M.: From chess and atari to starcraft and beyond: how game Al is driving the
world of Al KI-Kiinstlichelntelligenz 34(1), 7-17 (2020)

Sutoyo, R., Winata, D., Oliviani, K., Supriyadi, D.M.: Dynamic difficulty adjustment in tower
defence. Procedia Comput. Sci. 59, 435-444 (2015)

Unity: Official Unity Website (2020). https://unity.com/. Accessed 05 Dec 2020
Yannakakis, G.N., Togelius, J.: The 2010 IEEE conference on computational intelligence and
games report [society briefs]. IEEE Comput. Intell. Mag. 6(2), 10-14 (2011)

Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games, vol. 2. Springer, New York
(2018)

https://unity.com/

