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A B S T R A C T   

This work is an extension of a previous paper (presented at the Cyberworlds 2019 conference) introducing a new 
method for fractal compression of bitmap binary images. That work is now extended and enhanced through three 
new valuable features: (1) the bat algorithm is replaced by an improved version based on optimal forage strategy 
(OFS) and random disturbance strategy (RDS); (2) the inclusion of new similarity metrics; and (3) the consid
eration of a variable number of contractive maps, whose value can change dynamically over the population and 
over the iterations. The first feature improves the search capability of the method, the second one improves the 
reconstruction accuracy, and the third one computes the optimal number of contractive maps automatically. This 
new scheme is applied to a benchmark of two binary fractal images exhibiting a complex and irregular fractal 
shape. The graphical and numerical results show that the method performs very well, being able to reconstruct 
the input images with high accuracy. It also computes the optimal number of contractive maps in a fully 
automatic way. A comparative work with other alternative methods described in the literature is also carried out. 
It shows that the presented method outperforms the previous approaches significantly.   

1. Introduction 

1.1. Motivation 

Image compression has been a very active field of research for de
cades. However, the increasing volume of traffic and sharing of online 
video and image content has led to an impressive resurgence of interest 
in computer vision [7,17,40,48] and image processing, including image- 
based modeling [12], image segmentation [10,21,31], image classifi
cation [16,28] and related issues. The primary goal of image compres
sion is to reduce the cost for storage and/or transmission of digital 
images by taking advantage of internal redundancies in the images. This 
technology provides efficient storage of digital images as well as fast and 
reliable transmission of images among different devices and over the 
Internet. There are many techniques available for digital image 

compression [23,41,43]. In this paper, we focus on fractal image 
compression, a lossy compression technique based on the fractal ge
ometry that relies on the fact that, very often, some parts of an image 
resemble other parts of the same image. This feature is also character
istic in fractal geometry, as the fractal objects exhibit the property of self- 
similarity: they show (at least, approximately) similar patterns at 
different scales [15]. 

The core idea of fractal compression is to identify similar parts within 
a digital image and then, compute affine transformations connecting 
them, so that the image can be (approximately) reconstructed through 
iterative application of such transformations on an initial image [6,18]. 
This is done through the so-called iterated functions systems (IFS). 
Basically, an IFS is a finite set of contractive affine maps {ϕi}i=1,…,η, 
defined on a complete metric space, ℳ. These affine maps depend on 
several parameters accounting for different 2D geometrical operations 
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(scaling, rotation, shearing, and translation). The collection of suitable 
values of such parameters for all affine maps of the IFS used to recon
struct a given digital image is called the IFS code of the image. 

The iterated function systems were developed by Hutchinson in [30]. 
He proved that any IFS on a complete metric space has a unique non- 
empty compact fixed set (called the attractor of the IFS), whose graph
ical representation is a fractal image. He also defined an iterative way to 
obtain the attractor of an IFS through the Hutchinson operator (see 
Section 2 for details). 

In a previous paper (presented at the Cyberworlds 2019 conference), 
the authors proposed a modified bat algorithm coupled with a local 
search heuristics for fractal image compression of bitmap images [20]. 
The method performs well, with a similarity percentage of about 68% 
for the test example in the paper, but was also limited in some ways. For 
instance, it does not compute the number of contractive maps (which is 
assumed to be an input of the method). On the other hand, although it 
outperforms previous methods, its accuracy can still be further 
improved. The present contribution is aimed at improving that work, as 
explained in next section. 

1.2. Main contributions and structure of this paper 

In this work, the bat algorithm-based method introduced in our 
previous conference paper in [20] is extended and enhanced in several 
ways. The main contributions of this paper can be summarized as 
follows:  

• The local search in [20] is restricted to the neighborhood of the 
current best solution, which might be far from the global optimum. 
This problem is overcome through a new local search procedure 
based on optimal forage strategy (OFS). This strategy promotes the 
moves with large benefit during the local search of the method, not 
only those around the current best.  

• In the method in [20], only new solutions with a better fitness 
(positive moves) can be accepted. This limits the exploratory ca
pacity of the method. To overcome this drawback, a new random 
disturbance strategy (RDS) is applied, with the effect that negative 
moves can also be accepted. This strategy avoids the method to get 
stuck in a local optimum.  

• It is convenient to prioritize the exploration in the early stages of the 
method, in order to cover the entire search space and identify the 
most promising search areas, and to proceed later with the intensi
fication of the search in those areas. Accordingly, our method in
cludes a new parameter to switch the behavior between early 
exploration and late intensification through new evolution equations 
especially tailored for each particular phase.  

• In the method in [20], the number of contractive maps (η) is fixed 
and assumed to be known. In this paper, the value of η can change 
dynamically over the population and over the iterations. Further
more, our new method computes the optimal value of η automati
cally and accurately. 

• As a consequence of the previous changes, the elitism and the mu
tation operators of the method in [20] are no longer necessary, so in 
our new method they are removed. 

• In this work, several similarity functions (i.e., Hamming, intersec
tion, symmetric difference) and other metrics are considered and 
analyzed in order to get a better insight about the method and its 
internal operating principles. This analysis provides valuable infor
mation to identify limitations of some metrics as well as to determine 
the best metrics for this problem. 

• As a result of all these improvements, we obtain a Hamming simi
larity percentage of 86% and 92% for the two examples in the paper. 
To the best of our knowledge, no previous method has reported such 
high similarity values, even although they generally use simpler 
examples than those used in this work.  

• A comparative analysis with other alternative methods reported in 
the literature shows that our method outperforms them by a large 
margin for the examples in this work. 

This paper is organized as follows: Section 2 discusses the previous 
work in the field. The basic concepts and definitions needed to follow 
the paper are presented in Section 3. Then, Section 4 describes the 
collage theorem, the theoretical basis of the digital image compression 
with IFS. The proposed method is explained in detail in Section 5. The 
computational experiments and the main graphical and numerical re
sults are discussed in Section 6. The comparative work of our method 
with other approaches described in the literature and the computational 
complexity and CPU times are also reported in that section. The paper 
closes with the conclusions and some ideas for future work in the field. 

2. Previous work 

The concept of fractal encoding of images can be traced back to the 
seminal work in the 1980s by Michael Barnsley, who obtained several 
patents for fractal image compression based on his developments on 
iterated function systems (see [5] for details). The theoretical basis of 
this work was established a bit earlier by Hutchinson in [30], and then, 
in [3], where the famous collage theorem was presented. The use of 
fractal transformations to encode images was introduced in [2]. A 
popular algorithm for fractal images was published in [4]. This work 
was enhanced with the first automatic algorithm in [32], based on a new 
concept called partitioned iterated function systems (PIFS). These 
methods used exhaustive search strategies and thus, they were compu
tationally expensive, leading to low encoding speed. A lot of work has 
been done to tackle this issue, using quadtrees, rectangular partitions, 
and triangular partitions, sometimes in combination with clustering. 
The list of proposed methods is very large to be included here. The 
interested reader is referred to the review in [42]. 

Unfortunately, the fractal image compression problem has revealed 
to be extremely difficult and, except for some particular cases, no gen
eral solution has been reported yet. In general, this problem is strongly 
affected by the encoding/decoding asymmetry: encoding is extremely 
computationally expensive, owing to the need to find self-similarities in 
the image. On the contrary, decoding is astonishingly fast. This fact has 
made this technology impractical for real-time applications. Many at
tempts have been done to reduce the huge computational time required 
for the encoding phase. They include moment matching [1,19,46], 
wavelet transforms [8], and gradient search [47]. However, they are still 
computational expensive and only work properly for particular cases. 

It has been observed that fractal image compression can be formu
lated as an optimization problem. Therefore, it is a good candidate for 
metaheuristic techniques, such as those typically found in evolutionary 
computing and swarm intelligence. Genetic algorithms and genetic 
programming have been applied in [35,56] to determine the IFS coding 
of fractal bitmap images. Work about fractal compression using PIFS in 
combination with genetic algorithms can be found in [49,50,55]. Also, 
an evolutionary algorithm has been applied in [11] for fractal coding of 
binary images. Fractal image compression with different variations of 
the particle swarm optimization can be found in [38,45]. Other exam
ples of these techniques can be found in [14,22,39,44]. 

3. Mathematical background 

In this section, we provide the basic concepts and definitions needed 
to follow the paper. Further details can be found in [5,13,18]. 

Let (X, d) be a metric space, where X is a set and d a distance defined 
on X. A contractive map ϕ on (X, d) is a function ϕ : X→X for which there 
is a real number 0⩽k < 1 such that: 

d(ϕ(x),ϕ(y))⩽k.d(x, y) ∀x, y ∈ X 

An important result is the Banach fixed-point theorem, which states 
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that every contractive map on a non-empty complete metric space has a 
unique fixed point. Moreover, given any x ∈ X, the sequence x, ϕ(x),
ϕ(ϕ(x)),…resulting from composing ϕ iteratively with itself, converges 
to the fixed point. 

Let ℳ = (Ω,Ψ) be a complete metric space, where Ω⊂Rn, and Ψ is a 
distance on Ω. An IFS (iterated function system) is a finite set {ϕi}i=1,…,η of 
contractive affine maps ϕi : Ω⟶Ω defined on ℳ. In this paper, the IFS 
will be denoted as 𝒲 ={Ω; ϕ1,…,ϕη}. Since in this paper we are focused 
on 2D bitmap images, from now on we consider the complete metric 
space (R2,d2), where d2 denotes the Euclidean distance. Therefore, the 
affine maps ϕκ are bivariate functions given by: 
[

ξ*
1

ξ*
2

]

= ϕκ

[
ξ1
ξ2

]

=

[
θκ

11 θκ
12

θκ
21 θκ

22

][
ξ1
ξ2

]

+

[
σκ

1

σκ
2

]

(1) 

This expression can be written in vector notation as: Φκ(Ξ) = Θκ.Ξ +

Σκ, where Θκ is a 2 × 2 matrix describing the rotation, scaling, and 
shearing operations and Σκ is a 2D vector describing the translations. 
Since ϕκ is contractive, the eigenvalues of Θκ, denoted as λκ

1, λκ
2, hold: 

⃒
⃒
⃒λκ

j

⃒
⃒
⃒ < 1 and also we have μκ = |det(Θκ)| < 1. Intuitively, this means that 

the map ϕκ shrinks distances between points. 
From Eq. (1), we can see that any contractive affine map ϕκ is 

uniquely defined by the set of parameters {θκ
11, θκ

12, θκ
21, θκ

22, σκ
1, σκ

2}. 
Furthermore, any IFS, say 𝒲, is fully characterized by the collection of 
parameters {θκ

ij, σκ
i }i,j=1,2;κ=1,…,η. This set of parameters is called the IFS 

code of 𝒲. 
Let 𝒞𝒮(Ω) denote the set of all compact (i.e., closed and bounded) 

subsets of Ω. Note that the bitmap images are compact subsets of R2. The 
Hausdorff metric h on 𝒞𝒮(Ω) is defined as: 

h(ℛ,𝒮) = max{dh(ℛ,𝒮), dh(𝒮,ℛ)} (2)  

where: dh(ℛ,𝒮) = maxx∈ℛ miny∈𝒮 d2(x,y). 
It has been proved that, since (R2, d2) is a complete metric space, so is 

(𝒞𝒮(Ω), h) [5]. We can define a transformation, ℋ, called the Hutchinson 
operator on 𝒞𝒮(Ω), as: 

ℋ
(
ℬ
)
=
⋃η

κ=1
ϕκ

(
ℬ
)

∀ℬ ∈ 𝒞𝒮

(
Ω
)

(3)  

This operator defines the join action of all contractive maps ϕκ. Since all 
the ϕκ are contractions in (R2, d2),ℋ is also a contraction in (𝒞𝒮(Ω), h)
[30]. Then, according to the Banach fixed-point theorem, ℋ has a unique 
fixed point, ℋ(𝒜) = 𝒜. Interestingly, the set 𝒜 (called the attractor of the 
IFS) is a fractal image. 

Given an IFS with η contractive maps {ϕ1,…,ϕη}, there are several 
methods for rendering its corresponding attractor [26]. The most pop
ular one is the probabilistic algorithm, where each contractive map ϕκ is 
associated with a probability ωκ > 0, such that 

∑η
κ=1ωκ = 1. Starting 

with an compact set Ξ0 ∈ Ω, and proceeding iteratively, one of the maps 
of the IFS is randomly chosen at iteration j with probability ωκ to yield 
Ξj = ϕκ(Ξj− 1). The process is repeated again for the resulting set, and so 
on. It can be proved that {Ξj}j = 𝒜, meaning that this iterative process 
can be used to render the attractor [5,25]. The couple (𝒲,℘) comprised 
of the IFS, 𝒲, and the set of probabilities ℘ = {ω1,…,ωη}, is called and 
IFS with probabilities (IFSP). The initial set Ξ0 can be any compact set. 
However, since the maps ϕκ are contractive, it is advisable to take Ξ0 as a 
single point for computational efficiency. 

The set of probabilities, ℘, plays a significant role for the good per

formance of the rendering process. Several approaches to compute 
suitable values for the ωκ can be found in the literature [15,24]. The 
most popular method, called Barnsley’s algorithm (also, chaos game), 
consists of taking a probability value ωκ related to the area filled by the 
contractive map ϕκ, which is proportional to its contractive factor, μκ =
⃒
⃒det(Θκ)

⃒
⃒ =

⃒
⃒θκ

11.θ
κ
22 − θκ

12.θ
κ
21
⃒
⃒. The method then selects: 

ωi =
μi∑η
j=1μj

; i = 1,…, η. (4)  

This is also the method used in this paper. Other choices are possible as 
well, even leading to more efficient values [25]. However, this problem 
is out of the scope of this work and will not be addressed here. 

4. Digital image compression with IFS: the collage theorem 

The starting point for digital image compression with IFS is the 
collage theorem, firstly reported in [3]. Given an IFS, 𝒲 = {Ω; ϕ1,…,ϕη}, 
with contractivity factor 0 < μ < 1 (given by μ = max

κ=1,…,η
μκ, where μκ is 

the contractivity factor of the map ϕκ), and ℒ a non-empty compact 
subset ℒ ∈ 𝒞𝒮(Ω), if 

H(ℒ,ℋ(ℒ)) = H
(
ℒ,
⋃η

κ=1
ϕκ

(
ℒ
))

⩽∊  

for some ∊⩾0, where H(., .) is the Hausdorff metric, then 

H(ℒ,𝒜)⩽
∊

1 − μ  

where 𝒜 is the attractor of the IFS. This is equivalent to say that: 

H(ℒ,𝒜)⩽
1

1 − μ H
(
ℒ,
⋃η

κ=1
ϕκ

(
ℒ
))

.

In practical terms, the collage theorem states that given any (not 
necessarily fractal) digital image ℱ , there exists an IFS, say 𝒲, whose 
attractor has a graphical representation ℱ′ that approximates ℱ accu
rately, according to the Hausdorff metric. In other words, any digital 
image can be graphically approximated through an IFS. 

This theorem defines the basis of any fractal image compression 
method. To reconstruct a digital image ℱ , we need to obtain the 
collection of parameters of an IFS (i.e. its IFS coding), providing a good 
approximation of ℱ by ℋ(ℱ). However, it is enough to approximate ℱ
by ℋ(ℐ), where ℐ is any initial image (note that the attractor of 𝒲 is 
independent of the initial image ℐ). Such approximation must be 
measured according to a predefined similarity function 𝒮 computing the 
graphical distance between ℱ and ℋ(I). 

The discussion in previous paragraph means that digital image 
compression with IFS can be formulated as the following optimization 
problem: 

optimize
{Θκ ,Σκ ,ωκ}κ=1,…,η

𝒮(ℱ ,ℋ(I)) (5)  

for some similarity function 𝒮. This problem is far from being trivial. To 
begin, the problem is continuous, because all free variables in 
{Θκ,Σκ,ωκ}i are real-valued. It is also constrained, because the corre
sponding functions ϕκ have to be contractive. Furthermore, the problem 
is multimodal, as there can be several global or local optima of the 
similarity function. Finally, the problem can be high-dimensional for 
complex images, which might require many contractive maps for ac
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curate reconstruction. Obviously, this problem cannot be solved through 
classical mathematical optimization techniques. Several alternative 
techniques have been proposed to tackle this issue, as already described 
in Section 2. However, the problem remains open and new (more 
powerful) methods are still required to address this problem. 

5. The proposed method 

The proposed method is presented in this section. Firstly, a brief 
overview of the method is described. Then, the different elements of the 
method are discussed in detail. 

5.1. Overview of the method 

The input of our method is a fractal image, ℱ . It is assumed that ℱ is 
given as a rectangular binary bitmap image of size M × N (measured in 
pixels) on the compact domain Ω = [a, b] × [c, d]⊂R2. Mathematically, 
the image is represented by a matrix of 0s and 1s and size M× N, where 
value 1 means that the corresponding pixel belongs to the image, and 
0 otherwise. The goal is to compute the IFS 𝒲 = {ϕ1,…,ϕη} optimizing 
the expression (5). Note that this task also implies to obtain the optimal 
number of contractive functions, η (which was assumed to be known in 
the previous conference paper). To this aim, we consider an initial 
population of potential candidate solutions (called individuals or bats), 
as discussed in Section 5.2. Then, the method described in Section 5.4 is 
applied to obtain the solution of our optimization problem using the 
fitness functions described in Section 5.3. Next sections describe the 
different components of the method in detail. 

5.2. Representation of individuals and search space 

Evolutionary algorithms always need an adequate representation of 
the individuals of the population either in the phenotype or in the ge
notype. In this problem, the phenotype corresponds to a realization of a 
particular potential solution leading to the attractor of the correspond
ing IFS. In this work we consider the genotype, given by the chromo
somes, a sequence of genes encoding the properties of the individuals. In 
this method, the population at iteration t is a set of ℘ individuals (called 
bats), {𝒲t

1,𝒲
t
2,…,𝒲t

℘}, where each 𝒲t
ν is a collection of ην contractive 

maps: 

𝒲 t
ν =

{
ϕt

1,ν,ϕ
t
2,ν,…,ϕt

ην ,ν

} (
ν = 1,…,℘

)
(6)  

where: 

ϕt
i,ν =

(
θi,ν,t

1,1 , θ
i,ν,t
1,2 , θ

i,ν,t
2,1 , θ

i,ν,t
2,2 , σi,ν,t

1 , σi,ν,t
2
)

(i = 1,…, ην) (7)  

subjected to the constraint that every ϕt
i,ν must be contractive. This is 

equivalent to say that the following constraints must hold: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
θi,ν,t

1,1
)2

+
(
θi,ν,t

2,1
)2

< 1
(
θi,ν,t

1,2
)2

+
(
θi,ν,t

2,2
)2

< 1
(
θi,ν,t

1,1
)2

+
(
θi,ν,t

1,2
)2

+
(
θi,ν,t

2,1
)2

+
(
θi,ν,t

2,2
)2

< 1 +
(
θi,ν,t

1,1 .θ
i,ν,t
2,2 − θi,ν,t

1,2 .θ
i,ν,t
2,1
)2

(8)  

Note that each bat 𝒲t
ν may have a different length, ην. This is in clear 

contrast with the work in [20] where all bats are assumed to have the 
same length. This new feature provides a mechanism to compute the 
optimal value of η. 

These bats 𝒲t
ν are initialized with uniform random variables within 

the search space, given by the compact domain Ω = [a,b] × [c,d].Without 
loss of generality, we can consider the domain to be the unit square, i.e., 
a = c = 0, and b = d = 1. Applying Eq. (1) to the four corner points of 
the unit square leads to a set of constraints for the free variables. In 
particular: 

for

[
ξ*

1

ξ*
2

]

=

[ 0
0

]

⇒

⎧
⎨

⎩

a⩽σi,ν,t
1 ⩽b

c⩽σi,ν,t
2 ⩽d

for

[
ξ*

1

ξ*
2

]

=

[ 1
0

]

⇒

⎧
⎨

⎩

a − σi,ν,t
1 ⩽θi,ν,t

1,1 ⩽b − σi,ν,t
1

c − σi,ν,t
1 ⩽θi,ν,t

2,1 ⩽d − σi,ν,t
1

for

[
ξ*

1

ξ*
2

]

=

[ 0
1

]

⇒

⎧
⎨

⎩

a − σi,ν,t
2 ⩽θi,ν,t

1,2 ⩽b − σi,ν,t
2

c − σi,ν,t
2 ⩽θi,ν,t

2,2 ⩽d − σi,ν,t
2

for

[
ξ*

1

ξ*
2

]

=

[ 1
1

]

⇒

⎧
⎨

⎩

a⩽θi,ν,t
1,1 + θi,ν,t

2,1 + σi,ν,t
1 ⩽b

c⩽θi,ν,t
1,2 + θi,ν,t

2,2 + σi,ν,t
2 ⩽d

(9)  

In conclusion, the individuals in our population must fulfill the con
straints given by Eqs. (8) and (9). These conditions must be checked at 
every iteration step t. 

5.3. The fitness function 

Eq. (5) requires a similarity function, 𝒮, measuring the distance be
tween the attractor of the IFS, given by ℋ(I), and the original image ℱ . A 
natural choice is given by the Hausdorff distance between both sets, 
given by Eq. (2). However, this metric is computational expensive. 
Furthermore, it is not fully reliable for our goals, as it may identify as 
similar, images that are actually different geometrically. For these rea
sons, other similarity functions have been proposed in the literature 
[11,20]. In this work, we consider three of them, discussed in following 
paragraphs. 

A classical choice is given by the Hamming distance, Δ. Given two 
binary images, ℱ 1 and ℱ 2, of the same size M × N and domain 𝒟, they 
can be represented as two binary matrices of 0s and 1s for the two 
channel colors. Then, the Hamming distance is given by: 

Δ

(

ℱ 1,ℱ 2

)

=
∑

(x,y)∈𝒟

|ℱ 1(x, y) − ℱ 2(x, y)|

where ℱ j(x, y) indicates the value (either 0 or 1) of the pixel (x, y) for the 
image ℱ j, j = 1, 2. From this expression, we can define the Hamming 
similarity function, 𝒮Δ, as: 

𝒮Δ

(

ℱ 1,ℱ 2

)

= 1 −
Δ(ℱ 1,ℱ 2)

M × N
(10)  

Note that Δ(ℱ 1,ℱ 2) computes the number of mismatches between both 
images, and hence, 𝒮Δ(ℱ 1,ℱ 2) returns the rate of matches relative to the 
image size. As a result, values of 𝒮Δ(ℱ 1,ℱ 2) close to 1 mean that the 
images are very similar, with the value 1 indicating that they are iden
tical. 

Other possibility is given by the intersection similarity function, 𝒮∩, 
given by: 

𝒮∩

(

ℱ 1,ℱ 2

)

=
ℱ 1
⋂
ℱ 2▪

ℱ 1
⋃
ℱ 2▪

(11)  

where .▪ represents the number of active (black) pixels of the image. 
We can also consider a similarity function based on the symmetric 

difference between sets, ⊖, given by: 

ℱ 1 ⊖ℱ 2 = (ℱ 1 − ℱ 2)
⋃

(ℱ 2 − ℱ 1)

Then, we define the symmetric difference similarity function, 𝒮⊖, as: 

𝒮⊖

(

ℱ 1,ℱ 2

)

=
ℱ 1 ⊖ℱ 2▪

ℱ 1
⋃
ℱ 2▪

(12)  

Note that the similarity functions 𝒮Δ and 𝒮∩ lead to maximization 
problems (the higher, the better), while 𝒮⊖ corresponds to a minimi
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zation problem. However, we remark that, for any two sets A and B, we 
have: A ⊖ B = (A

⋃
B) − (A

⋂
B).Therefore, 𝒮∩ and 𝒮⊖ yield complemen

tary results, meaning that one of them can be safely omitted. Therefore, 
we will report only the results for 𝒮Δ and 𝒮∩, meaning that our problem 
in Eq. (5) is always a maximization problem on the interval [0,1]. 

5.4. Our approach: modified OFS-RDS bat algorithm 

Our previous conference paper in [20] addressed the fractal image 
compression problem through the bat algorithm, a popular swarm in
telligence method for optimization. To this aim, the original bat algo
rithm was enhanced with three additional features: a new population 
model with strong elitism, so that the best solutions are preserved to the 
next generation; new random individuals and mutation operators, to 
improve the exploratory capacity of the swarm; and a local search 
heuristics, to strengthen the exploitation phase in the neighborhood of 
the local optima at later stages. The results in that paper show that the 
method works well but it can still be further improved in several ways. A 
critical issue is the optimal number of contractive maps, which is not 
computed but assumed to be known. This prevents the method to be 
used in real-world applications, for which this a priori knowledge is 
almost never available. On the other hand, the similarity error can 
arguably be enhanced through further improvement of the local and 
global search phases of the bat algorithm. 

An interesting variation of the bat algorithm to tackle these issues 
has been recently proposed in the literature [9]. In that modification, the 
original bat algorithm is combined with two different strategies: firstly, 
an optimal forage strategy (OFS) is used to drive the search direction for 
each bat; then, a random disturbance strategy (RDS) is applied to 
enhance the global search pattern of the method. These new features are 
advantageously used in this work, as explained below. 

5.4.1. Original bat algorithm 
In the original bat algorithm [52–54], there are three evolution 

equations for the position, xg
i ; velocity vg

i ; and frequency, f g
i , of the i-th 

individual (bat) at generation g, as follows: 

f g
i = f g

min + β
(
f g

max − f g
min
)

(13)  

vg
i = vg− 1

i +
[
xg− 1

i − xg
*
]

f g
i (14)  

xg
i = xg− 1

i + vg
i (15)  

where β is a random variable following the uniform distribution on [0,1], 
and xg

* denotes the global best position (solution) according to a given 
fitness function. These equations are updated iteratively in order to look 
for better solutions in the search space. The position vector is used to 
encode the potential solutions of the optimization problem under 
analysis, while the velocity and frequency provide underlying mecha
nisms to modify the position during the iterative process. To this goal, 
the bat algorithm considers two search patterns for the bats: a global 
search, driven with probability rg

i (called the pulse rate), and a local 
search with probability 1 − rg

i . The pulse rate is not constant, but changes 
over the time according to the equation: rg+1

i = r0
i (1 − e− γg). The global 

search is modulated through Eqs. (13)–(15), while the local search is 
driven by a local random walk of the form: 

xg+1
i = xg

* +∊𝒜g (16)  

with ∊ a uniform random variable on [ − 1, 1] and 𝒜g =< 𝒜
g
i > being the 

average loudness of all the bats at generation g. 
Whenever a new solution is better than the previous best one, it is 

accepted according to a probability that depends on the value of the 
loudness. If the solution is accepted, the loudness decreases, while the 
rate of pulse emission decreases. The evolution rule for loudness is: 

𝒜
g+1
i = α𝒜g

i where α is a constant. Typically, each bat has different 
values for its loudness and pulse emission rate, which are obtained by 
randomization by taking an initial loudness 𝒜0

i ∈ (0,2). 

5.4.2. OFS-RDS bat algorithm 
The paper in [9] proposes a modification of the original bat algo

rithm based on two observations. The first one is that the local search at 
generation g in Eq. (16) is restricted to the neighborhood of the best 
solution of the whole swarm, xg

*. If the global optimum is far from this 
current best, the local search at that generation becomes essentially 
useless. This problem can be overcome through a new local search 
procedure inspired by the optimal forage strategy (OFS). This strategy is 
driven by a new term called the benefit of the i-th bat, bg

i , given by: 

bg
i =

f
(
xg

i
)
− f
(
xg− 1

i
)

⃒
⃒
⃒
⃒xg

i − xg− 1
i

⃒
⃒
⃒
⃒

(17)  

This benefit term is computed as the ratio between the energy obtained 
when the bat moves from old position xg− 1

i to new position xg
i at iteration 

g, given by f(xg
i ) − f(xg− 1

i ), and the energy invested in the local search, 

which depends on the distance between both positions, 
⃒
⃒
⃒

⃒
⃒
⃒xg

i − xg− 1
i

⃒
⃒
⃒

⃒
⃒
⃒. 

With this strategy, the method promotes the moves with large benefits 
during the local search, not merely those based on the current best of the 
swarm. Note that it may theoretically happen that xg− 1

i = xg
i in Eq. (17), 

so the denominator becomes zero. Furthermore, the numerator is also 
zero, so we get a 00 division. In terms of the algorithm, it means that there 
is no benefit to move from xg− 1

i to xg
i , so it makes sense to set bg

i = 0 in Eq. 
(17). This is what we actually do in our implementation: we avoid this 
situation by setting 00 = 0, which reflects well this “no benefit” situation 
in moving from xg− 1

i to xg
i . 

The second observation is that any new solution is probabilistically 
accepted if and only if it is better than the current solution. This limits 
the exploratory capacity of the swarm, as only positive moves are 
allowed at the short term, while negative ones are forbidden, even if 
they become positive at the long term. To overcome this limitation, a 
random disturbance strategy (RDS) is applied, in which Eq. (14) is 
replaced by: 

vg
i = ϱ

(
xg− 1

j − xg− 1
k

)
(18)  

where indices j and k are randomly selected from the population, and ϱ is 
a uniform random variable on the interval (0,1). The effect of this new 
equation is to prevent the bat to move within the line between xg− 1

i and 
xg

*, forcing it to explore other areas of the search space. 
These modifications lead to a new method called OFS-RDS bat al

gorithm. It has proved to outperform the original bat algorithm on a 
benchmark of 28 functions proposed as the test suite in the IEEE CEC- 
2013 competition for real-parameter optimization [9]. 

5.4.3. Modified OFS-RDS bat algorithm 
In order to apply the OFS-RDS bat algorithm to the optimization 

problem of this work, some additional modifications with respect to our 
previous method in [20] are needed, as follows:  

• the elitism of the previous conference paper [20] is advantageous 
when a fixed number of contractive maps is used. However, in this 
new approach, this number changes dynamically over the genera
tions, meaning that the global optimum can change drastically, 
especially at early stages of the iterative process. In this scenario, this 
elitist procedure becomes useless and, therefore, it has been 
removed. 
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• the population model in the previous conference paper is no longer 
required; the exploratory capacities that it offered are now assumed 
by the optimal forage and random disturbance strategies.  

• the mutation operators in [20] are now replaced by a switching 
procedure between Eqs. (14) and (18) ressembling that in [9]. At 
early stages of the bat algorithm, say T generations, Eq. (18) is 
preferred in order to explore the search space more efficiently, 
switching to Eq. (14) for exploitation of the best solution at later 
stages of the algorithm. 

The resulting method is coupled with a local search heuristics for 
further search intensification in the neighborhood of the global opti
mum. Similar to [20], in this work we apply the Luus-Jaakola local 
search procedure [36], as it shows a satisfactory performance. A detailed 
explanation can be found in [20] and is omitted here to avoid unnec
essary duplication of material. 

6. Computational experiments and results 

6.1. Benchmark and computational procedure 

The method described in the previous section has been applied to 
two illustrative examples of fractal images. The images, called blocks 
and bush, are displayed in Fig. 1(top) left and right, respectively. The 
first one was already presented in the conference paper and is used here 
for comparative purposes. Both images are generated through the chaos 
game algorithm with an IFS comprised of five contractive maps, iden
tified with colors blue, dark yellow, red, dark pink, and light green for 
the blocks image, and peach, beige, green, dark magenta, and mustard, 
for the bush fractal. We remark however, that the color is used for better 
visualization of the contractive maps but does not play any role in the 
method, which is applied exclusively to the binary (black and white) 
images, shown in Fig. 1(bottom). The images have been generated with 
one million points and processed as bitmap images of size 450 × 450 
pixels. 

For each example, the input of our method is the bitmap file of the 

Fig. 1. Example images of this paper in colored (top) and binary (bottom) versions: (left) blocks; (right) bush. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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given fractal image, denoted as ℐ onwards. It consists of a collection of 
202,500 pixels, encoded as a numerical binary square matrix of order 
450. Numerically, its elements are 1s and 0s, corresponding to the pixels 
of the fractal image and the pixels of the background, respectively. They 
are shown in Fig. 1(bottom), with the 1s and 0s represented as black and 
white pixels, respectively. The number of black and white pixels for the 
initial input image ℐ , denoted as ■ℐ and □ℐ respectively, is ■ℐ = 21,
790 and □ℐ = 180,710. 

We apply the method described in Section 5 using a population of 
100 bats, following the representation described in Section 5.2. Each bat 
corresponds to an IFS comprised of η contractive functions. Each 
contractive function is subjected to the constraints given by Eqs. (8) and 
(9). Different to the work in [20], the value is η is not fixed but allowed 
to take integer values between 3 and 12. All bats are initialized with 
random uniform variables for the initial population. For the examples in 
this paper, we consider the search space to be Ω = [ − 2,2] × [ − 2,2], i.e., 
a = c = − 2, and b = d = 2. Note that this assumption is equivalent to 
solve the problem on the unit square, as there is a simple affine trans
formation from the unit square to this new square domain. As a result, 
100 random initial images are generated for different random numbers 
of contractive functions. Then, the method in Section 5.4 is applied for a 
given number of generations, set to 𝒢max = 10,000 in this work, as this 
value ensures convergence for all examples we tried so far. 

Table 1 reports the different parameters of the method and the values 
used in this paper. The parameter tuning has been discussed in the 
conference paper and is omitted here to avoid duplication of material. 
Still, there is a new parameter, T, called switching parameter, to switch 
between Eqs. (14) and (18), as described in Section 5.4.3. It is set to T =

8, 500 generations in this paper. 

6.2. Results 

This section discusses the main results of this paper. Firstly, the 
graphical results are shown. Then, the numerical results are reported 
and analyzed. Finally, a comparative work with other alternative tech
niques is discussed. 

6.2.1. Graphical results 
Since the conference paper already showed the graphical results for 

the blocks example, in this section we will focus on the bush example 
for our discussion here. Figs. 2–5 show the evolution of the best solution 
of the population for the 10,000 iterations with step-size 250, starting 
with a random initial image for that example. The images are organized 
in two parts: on the left, the attractor of the IFS is depicted, with a 
different color for each contractive map; on the right, this colored 
attractor is combined with the target image (in black) superimposed on 
the attractor for better visualization of the difference between both 
images. These images are also shown in two QuickTime videos: Video1. 
mov (length: 84 s; size: 1.4 MB) and Video2.mov (length: 82 s; size: 1.8 
MB), submitted as accompanying material of this paper. 

The first image in Fig. 2 corresponds to one of the 100 random 

images in the initial population for the method in this paper. As the 
reader can see, this initial random image is very far from the target 
image. As shown in the subsequent images of the sequence in Figs. 2–5, 
the application of our method reduces this high discrepancy over the 
iterations, until reaching a very good approximation of the target image. 
Note also that the number of contractive maps, η, indicated by different 
colors in the figure, change dynamically over the iterations. For 
instance, the initial random image in Fig. 2 (top–left) has η = 7 
contractive maps, but this value is increased to η = 8 at iteration g = 500 
(Fig. 2, second row–left), and decreased to η = 6 at iteration g = 1000 
(Fig. 2, third row–left), where the contractive maps in red and blue from 
the previous image have been automatically removed. Whenever a new 
contractive map is added, a new color is assigned to the map for better 
identification. That is the reason why we can see different variations of 
the color palette throughout Figs. 2–5. 

From Figs. 2–5 we can see that the method is able to approximate the 
input image with increasing fidelity over the generations. This 
improvement is visually noticeable by simple observation of the general 
shape of the global best solution. At initial stages of the iterative process, 
the shape of the global best changes dramatically, which corresponds to 
a higher explorative phase, when the method explores the overall search 
space looking for promising solutions. This variation decreases over the 
iterations, leading to a more exploitative phase at later stages of the 
method, when the global shape is slightly modified through small in
cremental changes in order to enhance local features of the image. As a 
result, the global best is getting visually closer to the target image, until 
reaching convergence, when the final attractor image does not change 
and, consequently, the fitness function value no longer improves. 

Fig. 6 summarizes the graphical results of the global best of our 
method for the blocks (left) and the bush (right) examples in this 
paper. The top row shows the reconstructed images of the input images 
in Fig. 1. A simple visual comparison of the original and the recon
structed images shows that the method performs very well, as the final 
reconstructed images are very similar visually to the input images. The 
second and third rows of the figure show respectively the union and the 
intersection sets (displayed in inverted colors for better visualization) of 
the input and the reconstructed images. These images show that the 
method is able to capture successfully the major features of the input 
images even although they exhibit a complicated and irregular fractal 
pattern. These union and intersection sets will be used in next section to 
compute the intersection similarity function, 𝒮∩, and other additional 
similarity metrics. 

Figs. 7–10 (left to right, top to bottom) show the evolution of the 
union (left) and the intersection (right) sets of the input and the 
approximating fractal images of the bush example for the 10,000 iter
ations with step-size 250. Note the huge difference between the union 
and the intersection sets at the early stages of the method. This differ
ence is visually decreasing over the iterations, until the global shape of 
the input fractal image becomes apparent at later stages of the proced
ure. Two additional videos, showing respectively the evolution of the 
union and the intersection sets for the bush example, are also submitted 
as accompanying material of the paper. 

6.2.2. Numerical results 
The good graphical results described in previous paragraphs are well 

supported by the numerical results. Tables 2 and 3 summarize the main 
results obtained for the bush and the blocks fractal examples, 
respectively. The tables show the results obtained for the global best 
solution for the 10,000 generations sampled with step-size 250 (in 
rows). For each generation value g within this range, the following data 
are reported (in columns): number of generation, g; number of 
contractive maps, η, of the best solution at generation g; active (black) 
and background (white) pixels of the reconstructed image (labelled as ℛ
onwards), denoted as ■ℛ and □ℛ, respectively; number of pixels with 
different binary values for the input image, ℐ and the reconstructed 

Table 1 
Modified OFS-RDS bat algorithm parameters and values used in this work.  

Symbol Meaning Used Value 

℘ Population size 100 
𝒢max  Max. number of iterations 10,000 

𝒜0  Initial loudness 0.5  

𝒜min  minimum loudness 0 

r0  Initial pulse rate 0.2  

fmax  Maximum frequency 1.5  
α  Multiplicative factor 0.3  
γ  Exponential factor 0.2  
T Switching parameter 8,500  
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image, ℛ, denoted as ; value of the Hamming similarity function 
(see Eq. (10)), 𝒮Δ (between 0 and 1; the higher, the better); number of 
pixels in the intersection and union sets ℐ ∩ ℛ and ℐ ∪ ℛ, denoted as ■∩

and ■∪, respectively; value of the intersection similarity function (see 
Eq. (11)), 𝒮∩; and finally, two new metrics for this paper, the rate of 
active pixels in the intersection set ℐ ∩ ℛwith respect to the active pixels 
of the input image, ℐ , and the reconstructed image, ℛ, denoted as 
■∩/■ℐ and ■∩/■ℛ, respectively. 

Table 2 provides a lot of information to explain the previous obser
vations about the graphical results. For instance, the values of η in sec
ond column show that indeed the method can change automatically the 
number of contractive maps over the time in order to get a better 

approximation of the input image. These changes do not necessarily lead 
to an improvement of the similarity between ℐ and ℛ at the short term. 
For instance, the method changed from η = 8 at generation g = 2,000 to 
η = 5 at generation g = 2, 250, even although 𝒮Δ decreases from 
0.850405 to 0.845353. A similar effect occurs at generations 5, 000,6,
500 and others. These situations are allowed in order to avoid the 
method to get stuck in a local optimum and also to explore the search 
space more efficiently looking for more promising solutions. This is also 
the reason why we also removed the elitism of the previous conference 
paper in this enhanced version of the algorithm. Note also that the value 
of η in the table changes from 5 to 10 over the generations (the ground 
truth for the input image is η = 5, but this knowledge is never used in the 

Fig. 2. (l-r, t-b) Evolution of the best solution for 0 to 2,250 iterations (step-size 250).  
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method), even although we allow it to take values between 3 and 12 
(actually, these values are used for the initial random population, and 
they survive for a while, but the table only reports the best solution of 
the population). This means that the method is able to automatically 
select suitable values for η within a smaller subset of the initial proposal. 
We also remark that the value for the global best is never below 5, a clear 
indication that the input image cannot be replicated well with fewer 
than 5 contractive maps. Finally, we remark that the value of η keeps 
constant for the last 1,500 iterations, once convergence is achieved. 
Furthermore, this value matches the real value of the input image, a 
clear evidence of the strong ability of our method for fractal image 
reconstruction. A similar behavior can be observed in Table 3, although 

even larger values of η can be obtained for this example. This effect can 
be explained by the fact that this fractal image covers a larger area than 
the other example, so the method initially assigns more contractive 
maps during the exploration phase. This number is then refined at later 
stages, where the number of contractive functions is reduced but their 
contractivity factors increase in order to compensate for the missing 
functions. 

The number of black (white) pixels of the reconstructed image, given 
by ■ℛ (□ℛ) is a good indicator of the performance of the method. 
Obviously, this number should ideally match the value for the input 
image, ■ℐ = 21,790 and ■ℐ = 70,334 for the bush and blocks im
ages, respectively. From third column in Tables 2 and 3, we can see that 

Fig. 3. (l-r, t-b) Evolution of the best solution for 2,500 to 4,750 iterations (step-size 250).  
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this value oscillates dynamically above and below of this value, until 
settling in the values ■ℛ = 23,118 and ■ℛ = 70,814, an error less than 
6% and 1%, respectively. 

Another valuable indicator is the number of pixels (either black or 
white) with different binary values for ℐ and ℛ, , reported in the 
fifth column of the tables. This value is quite large at initial generation, 
but decreases over the generations, drastically at the beginning and at 
slower pace at late stages, until reaching the plateau value at 

for the bush example in Table 2. From this 
amount, 6,754 pixels correspond to the difference set ℐ − ℛ, while 8,086 
belong to the difference set ℛ − ℐ . The value of is used to 

compute the Hamming similarity function, one of the best indicators of 
the quality of the approximation. Its values are shown in the sixth col
umn of the table. Note that the final reconstructed image has a Hamming 
similarity of 0.926716, an excellent rate of matching of about 92.6%. A 
similar behavior is observed for the blocks example in Table 3, with a 
final Hamming similarity of 0.859348, a rate of matching of about 
85.9%. To our knowledge, no other previous method reported values of 
this order, even although some methods consider much simpler images 
than those used in our benchmark. 

The number of black pixels in the intersection ℐ ∩ ℛ and union ℐ ∩ ℛ

sets is very useful to quantify the degree of similarity of both images (the 
reader can see the evolution of the union and the intersection sets for the 

Fig. 4. (l-r, t-b) Evolution of the population best for 5,000 to 7,250 iterations (step-size 250).  
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10,000 generations with step-size 250 into additional accompanying 
QuickTime videos: Video3.mov (length: 82 s; size: 1.5 MB) and Video4. 
mov (length: 82 s; size: 0.8 MB). These values, reported in columns 7–8 
of the table, are used to compute the intersection similarity function 𝒮∩, 
shown in column 9. Note that this value oscillates up and down until 
reaching a final value of 𝒮∩ = 0.503650. This value might appear sur
prising in the light of the very good matching between ℐ and ℛ, 
confirmed by our graphical results and other indicators such as 𝒮Δ. 
However, it should be taken into account that any minor distortion of 
the image (e.g., rotation, scaling, or translation) might induce 

substantial changes on the values of this similarity function, even 
although the general shape of the image is still well reproduced. 
Furthermore, even if these variations occur at a local level, they are 
amplified by the self-similar nature of the fractal. As a result, they have a 
dramatic effect on the numerical results. On the other hand, we point out 
that this metric talks about the black pixels exclusively. As a result, it can 
also be strongly affected by the size of the fractal image. To analyze this 
effect in detail, we compute ■∩/■ℐ and ■∩/■ℛ, in columns 10 and 11, 
respectively. Their final results indicate that the rate of overlapping 
between ℐ ∩ ℛ and ℐ (resp. ℛ) is about 69% (resp. 65%) for the black 

Fig. 5. (l-r, t-b) Evolution of the population best for 7,500 to 9,750 iterations (step-size 250).  
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pixels. These results seem to disagree our previous conclusion of the 
good matching between both images. However, a further analysis show 
that the similar computations for the white pixels, i.e. □∩/□ℐ and 
□∩/□ℛ, show rates of 95.52% and 96.23%, respectively. This obser
vation is supported by the results for the blocks image, which has a 
significant larger amount of black pixels. In this case, the rates ■∩/■ℐ

and ■∩/■ℛ, are about 80% and 79.5%, respectively, leading to a better 
value for the intersection similarity function: 𝒮∩ = 0.664187. As a 
conclusion, when the number of black pixels of the image is small 
compared to the number of white pixels, the 𝒮∩ metric can be somehow 

misleading, and it should be complemented with (or even replaced by) 
other more reliable indicators, particularly 𝒮Δ. 

6.3. Comparative analysis 

It is always advisable to carry out a comparative work of the pro
posed method with other alternative approaches described in the liter
ature. To this aim, seven different methods are considered: artificial 
neural networks, simulated annealing, genetic algorithms, the firefly 
algorithm, the original bat algorithm, and two variants of the modified 

Fig. 6. Graphical results of our method for the blocks (left) and the bush (right) examples in Fig. 1: (top) best reconstructed images; (middle) union and (bottom) 
intersection sets of the input and reconstructed images in inverted binary colors. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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bat algorithm introduced in our previous conference paper [20], namely 
without and with local search (LS). They are good representatives of 
different families of methods: neural networks is one of the most widely 
used artificial intelligence methodologies; simulated annealing is a 
popular single-particle method; genetic algorithms are a standard 
method in the field of evolutionary computation; and firefly and bat 
algorithms are popular choices of population-based swarm intelligence 
algorithms. Furthermore, all these sets of methods have already been 
applied to this problem. 

Regarding the configuration and parameter tuning of these alterna
tive methods, for the neural networks we consider a multilayer per
ceptron (MLP), which is reported to be a universal function 
approximator. In our configuration, the MLP includes 30 neurons (as 

many as the actual free variables of the problem) in a single hidden 
layer, with the Levenberg–Marquardt back propagation algorithm used 
for training [34,37]. Whenever possible, we consider a similar param
eter tuning as in this paper for a fair comparison of the methods. For 
instance, we consider a population of 100 individuals and 10,000 iter
ations for the genetic algorithms, firefly algorithm, and bat algorithm, 
while a total of 106 iterations are considered for simulated annealing to 
compensate the fact that only a single particle is considered. In this way, 
we consider the same number of function evaluations as with the other 
methods. 

Table 4 shows the comparative results for the blocks and bush 
examples (arranged in columns). The different methods used in the 
comparison are listed in rows. For each method, the value of 𝒮Δ is 

Fig. 7. (l-r, t-b) Union (left) and intersection (right) sets of the input and approximating fractal images of the bush example for 0 to 2,250 iterations (step-size 250).  
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Fig. 8. (l-r, t-b) Union (left) and intersection (right) sets of the input and approximating fractal images of the bush example for 2,500 to 4,750 iterations (step- 
size 250). 
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reported. The best results are highlighted in bold for easier identifica
tion. From the table, we can see that the method in this paper out
performs all other alternative approaches in this comparison. 
Furthermore, the improvement rate is really significant, not merely in
cremental. These results are a good validation of this method with 
respect to the current state-of-the-art methods in the field. 

6.4. Computational complexity and CPU times 

It is well-known that it is not possible to determine the computa
tional complexity of metaheuristic methods (such as the bat algorithm 
used in this paper) on a general basis, as it depends on a number of 

factors such as the population size, number of generations, number of 
free variables, parameter tuning, landscape of the search space, and so 
on. To make things even harder, the metaheuristic methods cannot al
ways guarantee to find the global optimum. In this situation, the clas
sical approach is to compute either the number of functions evaluations 
or the CPU time of the algorithm. For the examples in this paper and the 
parameter tuning described in Section 6.1, the CPU time for a single 
execution is about 5–8 h, depending on the size and complexity of the 
image. These CPU times have been obtained with Matlab, version 2018a 
running on a personal PC with a 3.7 GHz. Intel Core i7 processor and 16 
GB. of RAM. Obviously, these CPU times make the method unsuitable for 
real-time applications. However, they are quite competitive with respect 

Fig. 9. (l-r, t-b) Union (left) and intersection (right) sets of the input and approximating fractal images of the bush example for 5,000 to 7,250 iterations (step- 
size 250). 
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Fig. 10. (l-r, t-b) Union (left) and intersection (right) sets of the input and the approximating fractal images of the bush example for 7,500 to 9,750 iterations (step- 
size 250). 
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to other similar approaches, such as those discussed in our comparative 
work. Regarding the complexity of the similarity functions, they have a 
worst case time complexity of O(M × N) for binary images of size M× N. 
As a result, their complexity is linear with the number of pixels of the 
image. 

7. Conclusions and future work 

This paper presents a new method for fractal compression of bitmap 
binary images encoded as IFS. The method is based on the application of 
a modified bat algorithm to compute all the parameters of the IFS code 
of the image automatically. This work follows up our previous paper in 
[20] extended and enhanced through three new valuable features:  

1. The bat algorithm in the previous conference paper is replaced by an 
improved version based on the optimal forage strategy (OFS) and the 
random disturbance strategy (RDS). These two strategies improve 
the search capability of the method, by promoting large benefit 
moves during the local search phase without restricting them to the 
neighborhood of the current best, and by allowing some negative 
moves, with the goal to prevent the method to get stuck in local 
optima. The method also includes a switching procedure for a better 
balance between early exploration and late intensification.  

2. Opposed to the conference paper, the number of contractive maps, η, 
is allowed to change for different individuals in the population and 

also to change dynamically over the iterations. Our new method 
computes the optimal value of η automatically and accurately.  

3. This work considers several similarity functions and other metrics to 
improve our understanding of the method and improve its accuracy. 

This new method is applied to a benchmark of two binary fractal 
images exhibiting a complex and irregular fractal shape. The graphical 
and numerical results show that the method performs very well, being 
able to reconstruct the input images with a Hamming similarity per
centage of 86% and 92%, much better than the results obtained by 
previous approaches. From these results, we conclude that the method is 
really promising and has a lot of potential in the field. 

Of course, the method has also some limitations. Perhaps the most 
critical one concerns the computation times, which ranges about 4–10 h 
for the experiments described here and others not reported here to keep 
the paper in manageable size. These CPU times are prohibitive for ap
plications requiring high-speed encoding. On the contrary, the decoding 
time is extremely fast and actually well suited for real-time applications. 
On the other hand, the accuracy might be still further improved, at least, 
theoretically. Although it is not realistic to expect a perfect matching, we 
think that the number of mismatches between the input and the 
reconstructed images might be reduced even a little bit more. We are 
currently working to improve these features. 

Other ideas for future work in the field include the extension of this 
method to general black-and-white images containing shades of gray, 
the development of methods for effective IFS encoding of color images 

Table 2 
Numerical results of our method for the bush fractal example (see the main text for details).  

g  η  ■ℛ □ℛ 𝒮Δ  ■∩ ■∪ 𝒮∩ ■∩/■ℐ ■∩/■ℛ

0 7 76,876 125,624 75,304 0.628128 11,681 86,985 0.134288 0.536072 0.151946 
250 7 34,502 167,998 41,602 0.794558 7,345 48,947 0.150060 0.337081 0.212886 
500 8 35,791 166,709 42,223 0.791491 7,679 49,902 0.153882 0.352409 0.214551 
750 8 29,185 173,315 35,713 0.823640 7,631 43,344 0.176057 0.350207 0.261470 

1,000 6 23,466 179,034 32,600 0.839012 6,328 38,928 0.162557 0.290408 0.269667 
1,250 7 28,676 173,824 30,898 0.847417 9,784 40,682 0.240499 0.449013 0.341191 
1,500 7 31,412 171,088 29,408 0.854775 11,897 41,305 0.288028 0.545984 0.378741 
1,750 7 29,544 172,956 26,860 0.867358 12,237 39,097 0.312991 0.561588 0.414196 
2,000 8 17,613 184,887 30,293 0.850405 4,555 34,848 0.130711 0.209041 0.258616 
2,250 5 25,378 177,122 31,316 0.845353 7,926 39,242 0.201977 0.363745 0.312318 
2,500 7 21,136 181,364 31,512 0.844385 5,707 37,219 0.153336 0.261909 0.270013 
2,750 7 26,626 175,874 33,278 0.835664 7,569 40,847 0.185301 0.347361 0.284271 
3,000 7 33,603 168,897 35,061 0.826859 10,166 45,227 0.224777 0.466544 0.302533 
3,250 6 22,836 179,664 30,792 0.847941 6,917 37,709 0.183431 0.317439 0.302899 
3,500 6 20,497 182,003 30,333 0.850207 5,977 36,310 0.164610 0.274300 0.291604 
3,750 7 25,409 177,091 32,543 0.839294 7,328 39,871 0.183793 0.336301 0.288402 
4,000 7 24,821 177,679 28,069 0.861388 9,271 37,340 0.248286 0.425470 0.373514 
4,250 8 19,401 183,099 26,245 0.870395 7,473 33,718 0.221632 0.342955 0.385186 
4,500 9 19,923 182,577 25,383 0.874652 8,165 33,548 0.243383 0.374713 0.409828 
4,750 9 21,545 180,955 28,811 0.857723 7,262 36,073 0.201314 0.333272 0.337062 
5,000 9 17,163 185,337 28,927 0.857151 5,013 33,940 0.147702 0.230060 0.292082 
5,250 10 24,647 177,853 31,997 0.841991 7,220 39,217 0.184104 0.331345 0.292936 
5,500 9 31,957 170,543 35,299 0.825684 9,224 44,523 0.207174 0.423313 0.288638 
5,750 10 36,942 165,558 35,376 0.825304 11,678 47,054 0.248183 0.535934 0.316117 
6,000 10 35,116 167,384 31,182 0.846015 12,862 44,044 0.292026 0.590271 0.366272 
6,250 10 30,230 172,270 29,804 0.85282 11,108 40,912 0.271512 0.509775 0.367450 
6,500 10 25,871 176,629 29,545 0.854099 9,058 38,603 0.234645 0.415695 0.350122 
6,750 9 27,978 174,522 31,604 0.843931 9,082 40,686 0.223222 0.416797 0.324612 
7,000 8 28,649 173,851 33,277 0.835669 8,581 41,858 0.205003 0.393804 0.299522 
7,250 8 24,790 177,710 30,698 0.848405 7,941 38,639 0.205518 0.364433 0.320331 
7,500 7 22,282 180,218 27,716 0.863131 8,178 35,894 0.227838 0.375311 0.367023 
7,750 6 23,972 178,528 28,344 0.860030 8,709 37,053 0.235042 0.399679 0.363299 
8,000 6 25,982 176,518 29,772 0.852978 9,000 38,772 0.232126 0.413034 0.346394 
8,250 6 23,415 179,085 26,607 0.868607 9,299 35,906 0.258982 0.426755 0.397139 
8,500 5 23,079 179,421 28,999 0.856795 7,935 36,934 0.214843 0.364158 0.343819 
8,750 5 15,578 186,922 24,066 0.881156 6,651 30,717 0.216525 0.305232 0.426948 
9,000 5 17,144 185,356 21,854 0.892079 8,540 30,394 0.280977 0.391923 0.498133 
9,250 5 17,599 184,901 22,087 0.890928 8,651 30,738 0.281443 0.397017 0.491562 
9,500 5 23,433 179,067 16,475 0.918642 14,374 30,849 0.465947 0.659662 0.613408 
9,750 5 23,123 179,377 14,843 0.926701 15,035 29,878 0.503213 0.689995 0.650218 

10,000 5 23,118 179,382 14,840 0.926716 15,040 29,862 0.503650 0.690225 0.650575  
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for different color spaces, and the development of new approaches to 
reduce the computational load in order to make this technology efficient 
for image and video storage with regards to video streaming and other 
online applications. 
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