
Improved Nature-Inspired Algorithms
for Numeric Association Rule Mining

Iztok Fister Jr.(B), Vili Podgorelec, and Iztok Fister

Faculty of Electrical Engineering and Computer Science, University of Maribor,
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Abstract. Nowadays, only a few papers exist dealing with Association
Rule Mining with numerical attributes. When we are confronted with
solving this problem using nature-inspired algorithms, two issues emerge:
How to shrink the values of the upper and lower bounds of attributes
properly, and How to define the evaluation function properly? This paper
proposes shrinking the interval of attributes using the so-called shrinking
coefficient, while the evaluation function is defined as a weighted sum of
support, confidence, inclusion and shrink coefficient. The four nature-
inspired algorithms were applied on sport datasets generated by a ran-
dom generator from the web. The results of the experiments revealed
that, although there are differences between selecting a specific algo-
rithm, they could be applied to the problem in practice.
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1 Introduction

Association Rule Mining (ARM) is used for discovering the dependence rules
between features in a transaction database. On the other hand, Numeric Associ-
ation Rule Mining (NARM) extends the idea of ARM, and is intended for mining
association rules where attributes in a transaction database are represented by
numerical values [4]. Usually, traditional algorithms, e.g. Apriori, requires numer-
ical attributes to be discretized before use. Discretization is sometimes trivial,
and sometimes does not have a positive influence on the results of mining. On
the other hand, many methods exist for ARM that do not require the discretiza-
tion step before applying the process of mining. Most of the these methods are
based on population-based nature-inspired metaheuristics, such as, for example,
Differential Evolution or Particle Swarm Optimization. NARM has recently also
been featured in some review papers [3,7] which emphasize its importance in the
data revolution era.

The objective of this short paper is to extend the paper of Fister et al. [5],
where the new algorithm for NARM was proposed, based on Differential Evolu-
tion. Indeed, the practical experiments revealed some problems/bottlenecks that
can be summarized into two issues:
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– How to shrink the lower and upper borders of numerical attributes?
– How to evaluate the mined rules better?

Each numerical attribute is determined by an interval of feasible values lim-
ited by its lower and upper bounds. The broader the interval, the more associa-
tion rules mined. The narrower the interval, the more specific relations between
attributes are discovered. Mined association rules can be evaluated according to
several criteria, like support and confidence. However, these cover only one side
of the coin. If we would also like to discover the other side, additional measures
must be included into the evaluation function. The paper is focused on devel-
oping the algorithm for the pure NARM. In line with this, a new evaluation
function needs to be proposed. As a result, the main contribution of this paper
can be extracted into the following indents:

– the new algorithm is proposed for the pure NARM,
– the new evaluation function is identified,
– the algorithm is applied to a sport dataset consisting of pure numeric

attributes.

The remainder of the paper is structured as follows: Sect. 2 highlights back-
ground information needed for understanding a subject. In Sect. 3, improved
algorithm is presented. Section 4 outlines the experiments as well as presents
results. Paper is wrapped up with a conclusion in Sect. 5.

2 Background Information

2.1 Association Rule Mining

This section presents briefly a formal definition of ARM. Let us suppose, a set
of objects O = {o1, . . . , om}, where m is the number of objects, and transaction
set D is given, where each transaction T is a subset of objects T ⊆ O. Then, an
association rule can be defined as the implication:

X ⇒ Y, (1)

where X ⊂ O, Y ⊂ O, in X ∩ Y = ∅. The following two measures are defined
for evaluating the quality of the association rule [2]:

conf (X ⇒ Y ) =
n(X ∪ Y )

n(X)
, (2)

supp(X ⇒ Y ) =
n(X ∪ Y )

N
, (3)

where conf (X ⇒ Y ) ≥ Cmin denotes confidence and supp(X ⇒ Y ) ≥ Smin

support of association rule X ⇒ Y . Thus, N in Eq. (3) represents the number of
transactions in transaction database D, and n(.) is the number of repetitions of
the particular rule X ⇒ Y within D. Here, Cmin denotes minimum confidence
and Smin minimum support determining that only those association rules with
confidence and support higher than Cmin and Smin are taken into consideration,
respectively.
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2.2 Differential Evolution for ARM Using Mixed Attributes

The basis of our study presents Differential Evolution for ARM using mixed
attributes (ARM-DE) proposed by Fister et al. in [5]. Development of this algo-
rithm is divided into three steps:

– domain analysis,
– representation of solution,
– evaluation function definition.

In that study, domain analysis of the observed sport database identified three
numerical and eleven categorical attributes. Thus, the former are determined
with intervals of feasible values limited by their minimum lower and maximum
upper bound values.

The individuals in the population are represented as real-valued vectors,
where every numerical attribute consists of corresponding lower and upper
bounds. On the other hand, each categorical attribute is identified by the real-
value drawn from the interval [0, 1] that is mapped to the corresponding discrete
attribute according to dividing the interval into equally-sized non-overlapping
sub-intervals. Additionally, the last element in the representation xi,D denotes
the so-called cut point, determining which part of the vector belongs to the
antecedent and which to the consequent of the mined association rule. The fol-
lowing fitness function was defined for evaluation of solutions:

f(x
(t)
i ) =

{
α ∗ conf (x

(t)
i ) + γ ∗ supp(x

(t)
i )/α + γ, if feasible(x

(t)
i ) = true,

−1, otherwise,
(4)

where conf (.) is confidence, supp(.) support, α and γ are weights, function
feasible(xi), denotes if the solution is feasible. The task of the optimization
is to find the maximum value of the evaluation function.

3 Improved DE for NARM

The proposed DE for NARM (also NARM-DE) operates on the transaction
database using only numerical attributes containing data obtained from a wear-
able device during sport training. Therefore, the new domain analysis needs to
be performed in a first step. The result of this step is illustrated in Table 1,
from which it can be seen that domain analysis of this database identified seven
numerical attributes characterizing a performance of a realized training session.
To each attribute, the corresponding intervals with their minimum lower and
maximum upper bounds are assigned in the Table.

Then, the representation of solutions must be adjusted to the new demands.
Here, the solutions are represented as real-valued vectors, in the following form:

x(t)
i = {〈x(t)

i,4πj
, x

(t)
i,4πj+1, x

(t)
i,4πj+2, x

(t)
i,4πj+3〉

︸ ︷︷ ︸

At
(t)
j

, . . . , x
(t)
i,4D

︸ ︷︷ ︸

Cp
(t)
i

)}, (5)
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Table 1. Domain analysis performed on the sport database.

Attribute Minimum lower bound Maximum upper bound

Duration 107.95 142.40

Distance 8.76 85.19

Average HR 63.00 168.00

Average ALT 7.23 1779.04

Calories 273.00 2243.00

Ascent 6.0 1884.40

Descent 2.0 1854.20

where elements x
(t)
i,4πj+k, for i = 1, . . . ,Np and j = 0, . . . , D−1 and k = 0, . . . , 3,

denote the attributes of features in association rules, t is an iteration counter,
and D the number of attributes. Indeed, each numerical attribute is expressed
as a quadruple:

At (t)i,j = 〈xi,4πj
, xi,3πj+1, xi,4πj+2, xi,4πj+3〉, (6)

where the first term denotes the lower bound, the second the upper bound, the
third the threshold value, and the fourth determines the ordering of the attribute
in the permutation.

The threshold value determines the presence or absence of the corresponding
numerical feature in the association rule, in other words:

At(t)πj
=

⎧

⎪
⎪
⎨

⎪
⎪
⎩

{

[NULL,NULL], if rand(0, 1) < x(t)
i,4πj+2,

{

[x(t)
i,4πj

, x
(t)
i,4πj+1], if x(t)

i,4πj
> x(t)

i,4πj+1,

[x(t)
i,4πj+1, x

(t)
i,4πj

], otherwise,

(7)

where a shrinking coefficient K is expressed as:

K =

⎛

⎝1 −

∣

∣

∣x
(t)
i,4πj

− x
(t)
i,4πj+1

∣

∣

∣

Ubπj
− Lbπj

⎞

⎠ , (8)

and Lbπj
and Ubπj

denote the corresponding lower and upper bounds. The
motivation behind the proposed equation is to shrink the whole interval of the
feasible values.

A permutation Π = (π1, . . . , πD) is assigned to each solution x(t)
i , which

orders the attributes At (t)j according to the following equation:

x
(t)
i,4π0+3 ≥ x

(t)
i,4πj+3 ≥ x

(t)
i,4πD−1+3, for j = 0, . . . , D − 1. (9)

Thus, the attributes with the higher value of the fourth element x
(t)
i,4πj+3 are

ordered at the start of the permutation, while the attributes with the lower
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values at the end of the permutation. In this case, each numerical attribute has
an equal chance to be selected as an antecedent or consequent of the mined
association rule.

The last element in the vector determines the cut point Cp(t)
i , expressed as:

Cp(t)
i =

⌊

x
(t)
i,D · (D − 2)

⌋

+ 1, (10)

where Cp(t)
i ∈ [1,D−1]. In summary, the length of solution vector is the 4·D+1.

The mapping of the solution representation to the corresponding association
rule is expressed as follows:

Ante(X ⇒ Y ) = {oπj
|πj < Cp(t)

i ∧ At (t)πj
= [NULL,NULL]},

Cons(X ⇒ Y ) = {oπj
|πj ≥ Cp(t)

i ∧ At (t)πj
= [NULL,NULL]},

(11)

where Ante(X ⇒ Y ) represents a set of objects belonging to antecedent and
Cons(X ⇒ Y ) is a set of objects belonging to consequent of the corresponding
association rule. However, the attribute needs to be enabled in order the object
to be valid member of the particular set.

Finally, an evaluation function must be defined. As found in the experimen-
tal work of Fister et al. [5], however, the main weakness of the ARM-DE was
reflected in the fact that the evaluation function consisted of a linear combina-
tion of support and confidence measures, which favours expanding the interval of
feasible values of numerical variables. Consequently, the expanding caused that
the number of mined association rules was increased, and the value of the evalua-
tion function was raised indirectly. On the other hand, the number of categorical
attributes was decreased. As a result, a new evaluation function is proposed, as
follows in our study:

f(x(t)
i ) =

α · supp(x(t)
i ) + β · conf (x(t)

i ) + γ · inclusion(x(t)
i ) + δ · K

α + β + γ + δ
, (12)

where supp(x(t)
i ) and conf (x(t)

i ) represent the support and confidence of the
observed association rule, K is the shrinking coefficient, and inclusion(x(t)

i ) is
defined as follows:

inclusion(X ⇒ Y ) =
|Ante(X ⇒ Y )| + |Cons(X ⇒ Y )|

m
, (13)

where |Ante(X ⇒ Y )| returns the number of attributes in the antecedent,
|Cons(X ⇒ Y )| is the number of attributes in consequence of the particular
association rule, and m is the total number of attributes. Weights in Eq. (12)
are set to α = β = γ = δ = 1 in the study.

Obviously, the task of the NARM-DE algorithm is to maximize the value of
the proposed evaluation function.
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4 Experiments and Results

The purpose of our experimental work was to show that the improved nature-
inspired algorithms for NARM should be applied successfully in practice. In
line with this, we focused on the posted issues, such as shrinking the lower and
upper bounds of the numerical attributes, and operating of the new evaluation
function.

During the experimental work, four different nature-inspired algorithms
were employed: Differential Evolution (DE) [6], Particle Swarm Optimization
(PSO) [6], Cuckoo Search (CS) [9], and Flower Pollination Algorithm (FPA) [8].
All algorithms used parameter settings as proposed in corresponding literature.
In order to make comparative analysis as fair as possible, the number of eval-
uation function evaluations was fixed as nFES = 10, 000, while the number of
independent runs was set as nRUN = 5.

The algorithms solved problems generated by the random sport dataset gen-
erator SportyDataGen [1]. The random generator is capable of generating ran-
dom instances of numerical attributes. The following measures were used for
comparing the algorithms: (1) Total number of mined rules, and (2) Average
number of antecedents and consequents1, (3) Average fitness, (4) Average sup-
port, (5) Average confidence, (6) Average shrink, and (7) Average inclusion.

The results of NARM are illustrated in Table 2, which presents the mentioned
statistical measures for each of the algorithms in the experiments. Let us notice
that the best results are depicted in bold case in the Table. As can be seen from
Table 2, DE discovered the maximum number of total rules. These rules are of
the best average fitness and inclusion. On the other hand, PSO mined rules of
the best average support, confidence and shrink. However, CS and FPA achieved
the best results according to the average number of antecedents/consequents. In
summary, the best results for using in practice were obtained by DE.

Table 2. Number of rules found using different algorithms.

Algorithm DE PSO CS FPA

Total rules 241,455 212,352 74,069 146,659

Average number of antecedents/consequents 5/2 5/2 4/3 3/4

Average fitness 0.7506 0.6519 0.1165 0.1858

Average support 0.8242 0.8729 0.1413 0.1181

Average confidence 0.9637 0.9812 0.5575 0.4106

Average shrink 0.2639 0.1703 0.2048 0.2771

Average inclusion 0.9722 0.8370 0.3260 0.4454

1 The first number denotes the number of antecedents, while second denotes the num-
ber of consequent.
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Interestingly, examples of selected solutions that were found by the proposed
algorithms are illustrated in Table 3.

Table 3. Examples of solutions found by the proposed algorithms.

Antecedent Cut Consequent

CAL[350.83, 1247.60]∧ =⇒ DIST[14.04, 85.19]∧
ALT(NO)∧ ASC[259.34, 1884.40]

DUR[107.95, 142.40]∧
DESC[312.42, 1409.12]

ALT[338.67, 589.31]∧ =⇒ DIST[8.76, 85.19]∧
DUR[131.29, 135.80]∧ DESC[774.99, 1258.80]

AVHR[63.0, 125.48]∧
CAL[273.0, 1498.70]∧
ASC[859.13, 1445.86]

ALT[7.22, 1134.88]∧ =⇒ DESC[2.0, 1598.18]∧
CAL[440.82, 1966.86]∧ DUR[107.95, 142.4]

ASC[6.0, 1503.78]∧
AVHR[86.16, 158.17]∧
DIST[17.43, 69.82]

4.1 Discussion

The results of the mentioned nature-inspired algorithms for NARM showed that
selection of the algorithm has a big influence on the quality of the results. Thus,
an advantage of the DE algorithm is in the total discovered rules, average fitness
and inclusion, while the PSO was better regarding the average support, confi-
dence, and shrink. On the other hand, working with the numerical attributes
revealed a lot of issues that need to be considered for the future work. Let us
mention only the more important ones:

– How to consider shrinking as the statistical measure? In our results, we con-
sidered the shrinking intervals of all attributes, including those that did not
arise in the mined rules.

– How to balance the weights of four terms in the proposed evaluation function?
In our case, all weights were set to the value of 1.0, which means that all the
contributions were weighted equally.

– Is the best mined association rule according to fitness value also the most
interesting?

– How to find the balance between shrink and inclusion?

The mentioned issues confirm that the development of the proposed algo-
rithm for pure NARM is far from completion. A lot of researches would be
necessary in order to find the proper answers to the mentioned issues.
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5 Conclusion

Development of a nature-inspired algorithm for pure NARM demands answers
to new issues, such as, for instance: How to shrink the lower and upper bounds of
numerical attributes? or How to find the proper evaluation function? The former
issue is confronted with the exploration of the search space, while the latter with
evaluating the quality of the mined association rules.

This paper proposes usage of the shrinking coefficient, that is determined as
a ratio between the difference of the generated upper and lower bounds, and
difference of the maximum upper and minimum lower bounds. As an evalua-
tion function, a weighted sum of support, confidence, inclusion, and shrinking
coefficient are taken into consideration. However, the weights were set to the
same value of 1.0 in our preliminary study. The nature-inspired algorithms for
pure NARM were employed to a sample sport dataset generated by the random
generator located on the web. Even four nature-inspired algorithms were tested
in our comparative study, as follows: DE, PSO, CS, and FPA.

The results of the comparative analysis revealed that, although there are dif-
ferences between the specific nature-inspired algorithms, these could be applied
for solving the problem in practice. On the other hand, a lot of work is necessary
in order to find the proper weights for determining the particular contributions
of terms in the evaluation function. However, all this work could be a potential
direction for the future work.
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