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Abstract: This work addresses the IFS-based image reconstruction problem for binary images. Given a
binary image as the input, the goal is to obtain all the parameters of an iterated function system whose
attractor approximates the input image accurately; the quality of this approximation is measured
according to a similarity function between the original and the reconstructed images. This paper
introduces a new method to tackle this issue. The method is based on functional networks, a powerful
extension of neural networks that uses functions instead of the scalar weights typically found in
standard neural networks. The method relies on an artificial network comprised of several functional
networks, one for each of the contractive affine maps forming the IFS. The method is applied to an
illustrative and challenging example of a fractal binary image exhibiting a complicated shape. The
graphical and numerical results show that the method performs very well and is able to reconstruct
the input image using IFS with high accuracy. The results also show that the method is not yet
optimal and offers room for further improvement.

Keywords: functional networks; artificial neural networks; binary images; iterated function systems;
collage theorem; image reconstruction

MSC: 28A80; 51N10; 65D18; 68T07; 68U05

1. Introduction
1.1. Motivation

Fractals are exciting mathematical entities that have sparked the popular imagination
and interest owing to their highly original and captivating graphical images. However, well
beyond their graphical appeal, researchers have found a wide variety of applications of
fractals in several fields. They have been used to produce realistic computer-generated
images of plants and other organic shapes for digital movies as well as to add special effects
in cinema, such as the blockbuster productions Star Trek II: The Wrath of Khan (1982), Star
Wars Episode III: Revenge of the Sith (2005), Guardians of the Galaxy Vol. 2 (2017), and many
other movies. Fractals have also been used to describe many physical and natural objects
and phenomena, including sharp coastlines, mountain ranges, snowflakes, lightnings,
forest canopy, river networks, and many others. Even some parts of our own bodies (such
as our neural, respiratory, and circulatory systems, to name just a few) can be adequately
represented by and analyzed with fractals. Fractal signals are used to analyze heartbeats in
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cardiology or identify anomalous tissues in cancer research. Fractal antennas are popular
in small-size telecommunication devices, while fractal image compression is used to store
images more efficiently. We can even find public exhibitions about fractal art in art galleries
and museums. Other applications arise in astronomy, computer graphics and animation,
biology, dynamical systems, bioinformatics, fluid dynamics, surface physics, and many
other fields [1–5].

This wide range of applications can be partly explained by the ubiquitous nature
of fractals, but also by the variety of methods used to generate them. Fractals can be
obtained through Brownian motion, random walk techniques, escape-time procedures,
finite subdivision rules, L-systems, as strange attractors of dynamical systems, and other
techniques [1,3,5,6]. A popular method for obtaining fractal images called Iterated Function
Systems (IFS) was proposed in the 1980s [7–9]. The method comes from the observation
that any finite collection of contractive affine maps (called an IFS) on a complete metric
space has one and only one compact fixed set under the action of the Hutchinson operator
(see Section 2.3 for details). Such a set is called the attractor of the IFS, and its graphical
representation is a fractal image (see Section 2.4 for details). Conversely, the collage theorem
states that any image in 2D (in particular, binary images) can be represented by an IFS (see
Section 2.6 for details). Obtaining the parameters of such IFS (including the total number
of contractive functions) is called the IFS inverse problem (likewise known as an IFS-based
image reconstruction). This is also the problem addressed in this paper.

There are many methods used for image reconstruction described in the literature.
Most of them are based on image processing techniques; for instance, see [10]. A completely
different approach to image reconstruction is given by the use of IFS. A clear advantage
of this approach is that the image is encoded by a set of simple contractive maps, each
represented by just six parameters. Once the IFS code of an image is obtained, the image can
be efficiently stored as a collection of IFS parameters called the IFS code (see Section 3 for
details). Given this IFS code, the image can be readily displayed through efficient real-time
algorithms (see Sections 2.4 and 2.5 for details). Therefore, instead of storing the image as a
bitmap, it can be more efficiently represented through the IFS code. Furthermore, since the
rendering of the image can be performed for any number of iterations, the image can be
enlarged at will without degrading its visual quality; it is just a matter of increasing the
number of iterations. In other words, the image behaves similar to a vector image but with
a much lower file size. This capacity can be exploited to store a huge collection of very
large images while using a relatively small memory.

1.2. Previous Work

The idea to use IFS codes to display fractal images was proposed by Barnsley in [7],
based on the theoretical work on iterated function systems by Hutchinson [9]. A popular
algorithm for rendering fractal images was presented in [11]. Another method for the IFS
coding and rendering of fractal images was introduced in [12]. Other methods include
wavelet transforms [13], gradient search [14], and moment matching [15–17], but they are
computationally expensive and generally limited to some particular and simple examples.
An interesting survey on fractal image compression is given in [18]. Although the paper
is currently not updated, the reference is still valuable in demonstrating the great interest
in this topic, as evidenced by the large number of previous works in the field. Unfortu-
nately, all these methods were computationally expensive, restricting its applicability to
challenging examples.

A more recent trend in the field is the application of artificial intelligence and machine
learning techniques to address difficult optimization problems for which classical mathe-
matical optimization techniques do not provide satisfactory solutions. In this regard, there
have been some attempts to apply such techniques to the IFS inverse problem. This interest
was motivated by the observation that this problem could be formulated as a nonlinear
optimization problem. The works in [19–24] tried to obtain the IFS coding of fractal bitmap
images through genetic algorithms and/or genetic programming. Other works applied
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evolutionary algorithms [25], bat algorithm [26], and particle swarm optimization [27,28].
Other examples of these techniques can be found in [29–33]. However, these methods were
strongly limited in several regards. On the one hand, the methods were generally limited
to the case of very few affine contractive maps (usually with a maximum of three or four
functions), thus severely restricting the potential range of reconstructed images [19,25,33].
On the other hand, the methods were applied to very small input images, such as those of
64× 64 pixels in [25] or 128× 128 pixels in [33]. Whenever the authors tried to consider
larger sizes such as 256× 256, the results were very poor or required an unreasonably huge
number of contractive maps, such as hundreds or thousands of functions. Due to these
strong limitations and the inability to achieve good results, the interest in this problem
decreased substantially during the last decade, with only a few papers being published in
the field. Two recent works by the authors of [34,35] addressed the IFS inverse problem for
colored images. Although at first sight, the problem appears to be similar to that addressed
in this paper, it is actually quite different. Since the input images in [34,35] were colored,
additional color-based methods could be used to help in the search for the number of con-
tractive maps and their parametric values. In both papers, histograms of the colored input
images were computed and then combined with image clustering using the multilevel Otsu
algorithm in [34] or the K-means algorithm in [35]. Obviously, these approaches cannot be
applied here because our input consists exclusively of binary images.

1.3. Aim and Main Contributions of This Paper

This paper introduces a new method to solve the IFS-based image reconstruction
problem in the case of binary images. Given a binary image, the goal is to compute the
parameters of an IFS so that its attractor would yield an image that is similar to the input
image according to some similarity metrics. The method is based on the application of
functional networks, a powerful extension of the classical artificial neural networks. Two
important features of the functional networks are that the weights in neural networks
are now replaced (fully or partially) by functions, and that the activation functions of
the neurons do not need to be the same for all neurons. Thanks to these new features,
the functional networks are more flexible than the neural networks and can replicate the
mathematical structure of a given problem more faithfully. This ability is successfully
employed in this work through an artificial network comprised of several functional
networks (as many as the number of contractive functions) that replicate the mathematical
structure of the contractive affine functions of an IFS. In this way, the IFS-based image
reconstruction is solved by computing all IFS parameters as the solutions of an optimization
problem—that of minimizing the distance between the original image and the reconstructed
image, as measured by a chosen similarity error function. The performance of the method
is assessed by its application to an example of a fractal image exhibiting a complex shape.

The main contributions of this paper can be summarized as follows:

• Novelty: As discussed above, a major feature of the functional networks is their ability
to replicate the mathematical structure of any given problem. This feature is not
present in other artificial intelligence paradigms such as neural networks, where the
activation function belongs to some prescribed families of functions unrelated to the
problem at hand, and the learning process is driven by the scalar weights. On the
contrary, the functional networks can learn the mathematical formulation of any
functional expression by using functions of one or several variables instead of weights.
This makes them very well-suited for problems such as the one addressed in this
paper. In spite of these powerful features, to the best of our knowledge, no previous
work reported so far in the literature has applied functional network formalism to
the IFS inverse problem. This work opens a promising line of research towards the
application of this methodology to the reconstruction of binary images through IFS.

• Generality: The method does not impose any constraints on the input binary image.
As a result, it is very general and can be applied to any binary image and for any
number of contractive functions. The limitations of previous methods with regard to
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the number of contractive maps and/or the size of the input images can be avoided
with our proposal.

• Good performance: As discussed in Section 6, the method performs quite well, being
able to reproduce the input image with good visual quality. The numerical results of
the comparative analysis in Section 6.4 also show that this method outperforms other
alternative approaches described in the literature, such as neural networks, simulated
annealing, genetic algorithms, and the firefly algorithm.

• Low computational complexity: The order of complexity of the method is comparable to
state-of-the-art techniques in artificial intelligence such as neural networks, genetic
algorithms, or particle swarm optimization. Furthermore, the method requires fewer
operations than these alternative methods.

1.4. Structure of This Paper

This paper is organized as follows: Section 2 introduces the main mathematical
concepts and definitions required to follow this work. A brief discussion about artificial
neural networks and their extension, functional networks (the approach used in this work),
is given in Section 3. Then, the problem addressed in this paper is discussed in Section 4,
while Section 5 describes our method in detail. The computational experiments and results
are discussed in Section 6. The paper closes in Section 7 with the main conclusions and
some future work in the field.

2. Mathematical Concepts and Definitions

This section provides the basic mathematical concepts and definitions required to
follow the paper. The interested reader is referred to [1,4,9,36] for further information.

2.1. Contractive Maps and Banach Fixed-Point Theorem

Definition 1. Let (S, d) be a metric space, where S is a non-empty set, and d a distance defined
on S. A contractive map h on (S, d) is a function h : S → S holding that there is a real number
0 ≤ C < 1, such that for any pair x, y ∈ S:

d(h(x), h(y)) ≤ C.d(x, y)

An important result due to Polish mathematician Stefan Banach is the Banach fixed-point
theorem, also called contractive mapping theorem, first stated in 1922.

Theorem 1 (Banach fixed-point theorem). Let (S, d) be a complete metric space, and h a con-
tractive map h : S → S. Then, h has a unique fixed-point p in S, that is, h(p) = p. Moreover,
given any x0 ∈ S, the sequence {xn}n∈N given by xn = h(xn−1), ∀n ∈ N, n ≥ 1 converges to p,
i.e., lim

n→∞
xn = p.

2.2. Iterated Function Systems

Definition 2. Let (D, ∆) be a complete metric space, with D ⊂ Rn, and ∆ being a distance on D.
An IFS (iterated function system) is a finite collection of functions {F1, F2, . . . , FN}, where each
function Fi is a contractive affine map on D according to Definition 1. Note that the IFS can be
represented as the tuple: {D; F1, F2, . . . , FN}.

The focus in this paper is on 2D binary images; therefore, we consider the case n = 2.
This means that the contractive affine maps Fi are applied onto the set D ⊂ R2. Let
d2 denote the Euclidean distance. We consider the space (R2, d2), which is a complete
metric space. In this case, any contractive affine map Fk can be represented mathematically
as follows: [

ζ∗1
ζ∗2

]
= Fk

[
ζ1
ζ2

]
=

[
ξk

11 ξk
12

ξk
21 ξk

22

]
.
[

ζ1
ζ2

]
+

[
τk

1
τk

2

]
(1)
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This expression can be written in vector notation as: Fk(Θ) = Ak.Θ + bk, where Ak is
a 2× 2 matrix representing the rotation and scaling operations, and bk is a two-dimensional
vector representing the translations. Because Fk is a contractive map, the eigenvalues of
Ak, denoted as λk

1, λk
2, hold: |λk

j | < 1. Furthermore, sk = |det(Ak)| < 1. The graphical
interpretation of this property is that the map Fk shrinks the Euclidean distance between
any two points.

From Equation (1), we can see that the contractive affine map Fk is uniquely represented
by the set of parameters {ξk

11, ξk
12, ξk

21, ξk
22, τk

1 , τk
2}, which are called IFS parameters of function

Fk. Consequently, the IFS {D; F1, F2, . . . , FN} is fully characterized by the collection of
parameters {ξk

ij, τk
i }i,j=1,2;k=1,...,N , which is called the IFS code.

2.3. Hausdorff Metric and Hutchinson Operator

Definition 3. Let CS (D) denote the set of all compact subsets of D. The Hausdorff metric H on
CS (D) is mathematically defined as follows:

H(R,S) = max{dH(R,S), dH(S ,R)} (2)

where dH(R,S) = max
x∈R

min
y∈S

d2(x, y).

The Heine–Borel theorem states that for any L ⊂ D ⊂ R2 with the Euclidean distance
d2, L is a compact set if and only if L is a closed and bounded set. We remark that the 2D
binary images in this work are closed and bounded and are hence compact subsets of the
Euclidean space R2.

Theorem 2. The space (CS (D), H), where CS (D) is the set of all compact subsets of D and H is
the Hausdorff metric on CS (D), is also a complete metric space.

Proof. This theorem is a consequence of the fact that (R2, d2) is a complete metric space.
See [1] for a proof.

Definition 4. It is possible to define a transformation on CS (D), known as the Hutchinson operator
and denoted byH, as follows:

H(B) =
N⋃

k=1

Fk(B) ∀B ∈ CS (D) (3)

This operator defines the joint action of all contractive maps Fk.

Theorem 3. Since all the Fk are contractive maps in (R2, d2),H is also a contractive function in
(CS (D), H).

Proof. See [9] for a proof.

Corollary 1. According to the Banach fixed-point theorem,H has a unique fixed pointH(A) = A,
which is called the attractor of the IFS. This fixed-point set A is a fractal image.

2.4. Rendering the IFS Attractor

There are several ways of rendering the attractor of an IFS given by contractive maps
{F1, F2, . . . , FN} [6]. A popular approach is given by the probabilistic algorithm, where each

contractive map Fk is assigned a probability pk > 0, such that
N

∑
k=1

pk = 1. To this aim,

an initial compact set B0 ⊂ D is considered, and then one of the contractive maps Fk of the
IFS is randomly chosen at iteration j with probability pk to yield Bj = Fk(Bj−1). This process
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is repeated iteratively for the resulting set. It can be proved that lim
j→∞
Bj = A. This implies

that this iterative procedure can be successfully applied to display the attractor [1,37]. Note
that the initial set B0 in this algorithm can be any non-empty compact set. However, because
all the maps Fk are contractive, it is convenient to select B0 as a single point for better
computational efficiency.

2.5. The Chaos Game

It is worth mentioning that the attractor of the IFS is determined exclusively by its IFS
code, while the probabilities pk do not play any role in defining the attractor. However,
they play an important role in the computational performance of rendering the attractor.
This leads to the problem of determining good values for the probabilities. Several methods
have been described in the literature to solve this issue [3,38]. The most common and
popular method is called the chaos game, also known as Barnsley’s algorithm. The method
proportionally assigns a probability value pk to the area described by the contractive map Fk,
which is in turn proportional to its contractivity factor sk = |det(Ak)| = |ξk

11.ξk
22 − ξk

12.ξk
21|.

Once all contractivity factors are calculated, they are normalized to obtain the probabilities
as follows:

pk =
sk

N
∑

j=1
sj

; k = 1, . . . , N. (4)

This method can be improved by using the multifractal formalism to derive optimal
values for the probabilities [37]. However, this optimal procedure is more difficult to
achieve and unnecessary for the goals of this paper. Therefore, in what follows, we always
apply the chaos game method to compute for the probabilities.

2.6. The Collage Theorem

An important result of IFS that has a relevant application to images is the collage
theorem, first presented in [8].

Theorem 4 (Collage Theorem). Given an IFS, {D; F1, . . . , FN}, with a contractivity factor
0 < s < 1 given by s = max

k=1,...,N
sk, and B being a non-empty compact subset B ∈ CS (D), if

H(B,H(B)) = H

(
B,

N⋃

k=1

Fk(B)
)
≤ ε

for some ε ≥ 0, then
H(B,A) ≤ ε

1− s
where A is the attractor of the IFS. This is equivalent to saying that:

H(B,A) ≤ 1
1− s

H

(
B,

N⋃

k=1

Fk(B)
)

.

Proof. See [1,8] for a proof.

Intuitively, the collage theorem means that for any given image B, it is possible to
find an IFS whose attractor A can approximate B accurately, where the approximation
accuracy is measured in terms of the Hausdorff metric. However, the theorem says nothing
about how to obtain such an IFS. This is the problem addressed in this paper, which will be
described in detail in Section 4.
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3. Functional Networks
3.1. Artificial Neural Networks

Artificial neural networks (ANNs) are one of the most popular and widely used
artificial intelligence techniques. Their popularity has increased dramatically in recent
years as ANNs are fundamental components of many algorithms for deep learning. ANNs
are inspired by the biological structure of the brain of humans and other mammals. Similar
to their biological counterparts, ANNs consist of a collection of individual processing units
called neurons, which are arranged in different layers, including an input layer, an output
layer, and one or several layers called hidden layers, which connect the input and output
layers. It is important to point out that the information generally flows forward from
the input layer to the output layer. Neurons are connected through signals replicating
the synaptic signals observed in biological neural networks. In ANNs, these signals are
affected by scalar values called weights, which are modified dynamically depending on
the input used during the training phase. These weights determine the importance of any
given variable, with the effect of larger ones contributing more significantly to the output
as compared to other (lower) values. In this way, the weights play a significant role in
the learning process. Additionally, the neurons can have a threshold value, also called a
bias. Whenever the output of an individual neuron is above the specified threshold value,
the neuron is activated, and its output is sent to neurons of the same or next layers of the
network. Otherwise, no data are transferred from that neuron to the rest of the network.

To process the information, each neuron Nj receives some inputs xi from the neurons

of previous layers, then it computes the linear combination
m
∑

i=1
wijxi + b, where xi is the

input coming from neuron Ni, wij is the weight of the connection between the neurons Ni
and Nj, in this specific order, and b denotes the bias. Each neuron also has an activation
function, such that the output of the neuron is modulated by this function. The activation
function is usually nonlinear to allow the network to learn and perform more complicated
tasks. Typical activation functions are the sigmoid function, hyperbolic tangent, the ReLU
function, and the softmax function.

Finally, an important aspect of ANNs is the network architecture, which determines
how many layers are created, how the different neurons are arranged in such layers,
and how the neurons are interconnected. There are many possible architectures (feed-
forward, self-organizing maps, radial basis function, recurrent, convolutional, modular,
etc.), although they are mostly grouped into some specific categories, which depend on
the criteria used to classify them. These different architectures are usually designed for
different purposes. For more details on ANNs see, for instance, [39].

3.2. Functional Networks

Although artificial neural networks have shown remarkable ability to solve several
problems, they are also severely limited in many aspects. For instance, ANNs are strongly
limited to describing complex mathematical expressions as they use the same activation
function for all the neurons. Furthermore, the activation function always has a single
variable, so multivariate problems cannot be properly represented. Finally, the connections
between neurons are associated with (strictly) scalar weights, once again dramatically
restricting the flexibility of ANNs.

All the above-mentioned drawbacks can be solved by using functional networks,
which were first introduced in [40]. Functional networks have been successfully applied
to many problems in the scientific and engineering domains [41–43]. In short, functional
networks are a powerful and versatile extension of the traditional artificial neural networks
in which the scalar weights are replaced by functions. Such functions must not necessarily
be univariate; instead, functions of several variables can also be used. These new features
confer greater versatility to functional networks, thus being able to better represent more
complicated mathematical expressions. For instance, instead of approximating a complex
mathematical expression involving complicated nonlinear functions through a weighted
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combination of (simple) univariate activation functions, such nonlinear functions can be
readily embedded into the functional network as the activation functions of some neurons,
while the operators of the mathematical expression can be represented by additional
neurons. This high level of flexibility, which will be fully exploited in Section 5, cannot be
achieved by using ANNs.

Functional networks and neural networks share many common features, such as a
rather similar (but not identical) graphical representation. Figure 1 helps us understand
what the structure of a functional network looks like. In particular, the functional network
in that figure replicates the mathematical structure of any affine contractive map in R2,
which is formulated as follows:

[
x∗

y∗

]
=

[
a b
c d

]
.
[

x
y

]
+

[
e
f

]
(5)

Figure 1 shows the main components of a functional network, namely:

1. Layers of neurons. Similar to ANNs, neurons are represented by circles with the
name of the corresponding neural function inside. For example, in Figure 1, we
have two intermediate layers comprised of four and two neurons, respectively. The
neural functions in the first layer and the second layer correspond to the × and the +
operators, respectively.

2. Layers of storing units. This is a new component with respect to the traditional ANNs.
The storing units are not neurons, and they do not process information; their task is to
store intermediate information. They are represented graphically by small circles in
black. The storing units are optional and generally used to allow connections of more
than one neuron output to the same unit. In Figure 1, and moving upwards, we can
see a first layer of eight input units storing the input information, a second layer of
four storing units containing the products of two inputs, a third layer of two storing
units containing the transformations of the initial variable x and y under the action of
the affine contractive function in Equation (5), and a fourth (output) layer combining
both outputs into a single 2D vector.

3. A set of directed links. Similar to ANNs, they are used to connect the input or inter-
mediate layers to its adjacent layer of neurons. These connections are graphically
represented by arrows to show the bottom-up flow direction from the input layer to
the output layer.

4. A set of weights. Similar to ANNs, the output of the neurons can also be modulated
by scalar weights. In Figure 1, there are six scalar weights corresponding to the
parameters of Equation (5). These weights modify the initial parameters a, b, c, d, e, f
into new values a′, b′, c′, d′, e′, f ′. The weights are not fixed but change dynamically
by reinforcement, learning along the iterations during the learning process.

To summarize, the functional networks are more general and exhibit a higher flexibility
than the ANNs, which can be advantageously applied to solve more complex problems.
However, it should also be remarked that the learning process is more difficult with
functional networks than with ANNs; because the weights are no longer numbers but
functions, the learning process requires the solving of a set of functional equations, which
is harder than solving the system of equations that typically arise in ANNs [37].
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e a b x y c d f

x x x x

+ +

I

I(x,y)=(a' x+ b'y +e',c' x+ d'y +f')

ax
    b      ycx    d           y

a' x+ b'y +e' c' x+ d'y +f'

we wa wb wc wd wf

Figure 1. Functional network of the contractive affine map in Equation (5).

4. The Problem

As discussed in Section 2.6, the collage theorem implies that any digital image I
in R2 can be graphically approximated through an IFS. More precisely, it is possible to
find an IFS {F1, F2, . . . , FN} such that its attractorH(B) can approximate I according to a
similarity error function Ψ that computes the distance between both compact sets, I and
H(B). Furthermore, according to the discussion in Section 2.4, such an attractor can be
obtained from any initial non-empty compact set B.

Unfortunately, the collage theorem does not provide any indication about how to
obtain the IFS; it just states that such an IFS exists. Thus, while it is very easy to graphically
obtain the attractor with a given IFS {F1, F2, . . . , FN}, the inverse problem (i.e., obtaining the
associated IFS with a given graphical representation of an attractor) has been revealed to be
extremely difficult. In fact, the literature still lacks a reliable method of determining the IFS
that approximates a given image accurately. In this paper, we address this inverse problem
through an automatic procedure based on functional networks, as explained in Section 5.
Note that solving this inverse problem implies determining the number of contractive maps
of the IFS along with their parameters; in other words, determining the IFS code, which
is given by the set {ξk

ij, τk
i }i,j=1,2;k=1,...,N . This problem, sometimes referred to as the IFS

encoding, can be formulated as a minimization problem given by the following equation:

minimize
{ξk

ij ,τ
k
i }i,j=1,2;k=1,...,N

Ψ(I ,H(B)) (6)

for some similarity error function Ψ.
This problem in Equation (6) is a very difficult one for several reasons. On the one

hand, the problem is continuous and high-dimensional since all variables of the problem
are real-valued, and complex images can require a large number of contractive maps to
be accurately reconstructed. It is also constrained because the affine maps Fk of the IFS
have to be contractive. On the other hand, the problem is multimodal, which means that
there can be several global or local optima of the similarity error function. As a result,
this problem has proven to be unsolvable with the application of traditional mathematical
optimization techniques. Although many alternative techniques have been described in
the literature, as discussed in Section 1.2, the problem remains unsolved to a large extent.
In this context, a new method based on functional networks is proposed in this paper. This
will be discussed in next section.
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5. The Method
5.1. Overview of the Method

The method proposed in this paper relies on functional networks to solve the op-
timization problem given by Equation (6). The input of the network is a binary (black
and white) image of p × q pixels, where the actual pixels of the image appear in black.
The image is mathematically described as a matrixM of size p× q, where each entry mi,j
takes a value of 1 if the corresponding pixel (i, j) of the image is colored in black, and a
value of 0 if otherwise. The output of the method is the IFS code of an IFS {F1, F2, . . . , FN}
of N contractive maps, where N is a parameter freely chosen by the user. A functional
network with the structure shown in Figure 1 is used for each contractive map of the IFS.
The resulting N functional networks are combined in a general network with the structure
shown in Figure 2. As shown in that figure, the method takes the different pixels (x, y) of
the given image as the input of N functional networks. Each functional network FNj is
used to compute the IFS code of the corresponding contractive map Fj. The input of the
functional network is given by the pixel (x, y) and the values of the parameters of the IFS
code of Fj, assumed to be randomly initialized with uniform distribution but subjected to
the constraints of contractivity (if the random values do not satisfy such constraints, new
random values are taken). The learning process proceeds iteratively: at each generation,
the network is presented with all the pixels of the input image. Then, based on their
previous values, each functional network computes new values for the IFS code. Such
values are stored in an output matrix of the IFS code of the image, which is used to generate
the reconstructed image through the procedure described in Sections 2.4 and 2.5. Next,
the network computes the similarity error between the input image and the reconstructed
image. This iterative process can be repeated for a given number of iterations, denoted
onwards as M, or until the similarity error is below a prescribed threshold.
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Figure 2. General scheme of the network computing the IFS code of the input image.

5.2. Similarity Error Function

The optimization problem in Equation (6) depends on a similarity error function
computing the distance between the original and the reconstructed images. A natural
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choice would be the Hausdorff distance, defined in Equation (2), but it is highly demanding
computationally and hence inefficient for large images. Fortunately, several alternative
functions can be chosen for this purpose.

Our function is based on the Hamming distance, a popular choice to measure distances
between binary strings. If the original and reconstructed images, denoted onwards as O
and R, are represented mathematically by two matrices of binary values 0 and 1 and of
equal dimensions p× q, the Hamming similarity error function SH between O andR can
be obtained as follows:

SH(O,R) = 1
p× q

p

∑
x=1

q

∑
y=1
|O(x, y)−R(x, y)| (7)

which is a function taking values on the interval [0, 1], where the value 0 means that both
images are identical.

6. Computational Procedure and Results
6.1. Computational Procedure

The method described in the previous section has been applied to some examples
of binary fractal images. In this section, we describe one of such examples in detail.
The example is shown in Figure 3, where the fractal is displayed as a binary image (i.e.,
in black and white) on the left and as a colored image on the right, where a different color
is selected for each contractive map. We remark, however, that the color is used only for
illustrative purposes and does not play any role in the method. The input image used in
our method is the binary image on the left.

Figure 3. Fractal image used in this paper: (left) in black and white; (right) in different colors for
each contractive map.

We apply our method as explained in Section 5. The input of the method is the
fractal image in Figure 3 (left), represented numerically by a binary matrix of size 600× 600.
The number of active (black) pixels in the image is 65,532. The network in Figure 2 is applied
iteratively for M = 1200 iterations, following the procedure described in Section 5.1. In our
trials, this number of iterations was enough to ensure the convergence of the process in
our experiments.

6.2. Graphical Results

Figures 4–6 show the evolution of the reconstructed image from the initial to the final
iteration, every 20 iterations. The figures are shown here to illustrate how the functional
network-based method actually works. As explained above, the method is initialized with
random values for the IFS parameters, leading to an image that is graphically very different
from the target image of Figure 3 (left). During the learning process, the network updates
the values of the IFS parameters, leading to images that slowly converge towards the target.
The reconstructed image corresponds to the last image in Figure 6.
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A simple visual comparison with Figure 3 (left) shows the close resemblance between
the original and the reconstructed images. From the graphical results, we can conclude
that the method performs quite well as it is able to recover the general shape of the im-
age with high visual accuracy. This result is remarkable since the process starts with a
random IFS code. Furthermore, the target image exhibits a complicated and irregular
shape, which makes it hard to figure out the possible values of the IFS parameters. How-
ever, even in this case, not only the general shape but also all major features of the image
are faithfully recovered.

Nevertheless, we noticed that the original and the reconstructed images, albeit quite
similar visually, are not identical. Since it is hard to check this fact by a simple visual
comparison of the original and the reconstructed images, we also compute the intersection
and the union operators of both images every 20 iterations. The corresponding graphical
outputs are shown in Figures 7–9 for the intersection operator, and in Figures 10–12 for the
union operator. We use reverse colors in all these figures for a better visualization of their
main features.

The intersection and union operators are very useful for quantifying the differences
between the original and the reconstructed images over the iterations as they account for
the common points and the active areas of the image, respectively. Ideally, the final images
for both operators should be identical to the original image for perfect matching.

Clearly, this does not happen here. Although the original and the reconstructed
images are quite similar, there are still some visual differences. In other words, there is
no perfect match with this approach, which means that our method still has room for
further improvement.

6.3. Numerical Results

The graphical results of the method are confirmed by the numerical data. Table 1 shows
the number of iterations (denoted as iter) of the method (with a step size of 20), the number
of pixels with a different binary value for the original image I and the reconstructed image
R (denoted as I 6= R), and the similarity between both images. This similarity is obtained
as 1− SH , where SH is the similarity error computed according to Equation (7). Note that
a similarity of 1 means a perfect match between both images.

As the reader can see, the method slowly improves over the iterations. The number of
different points between the images evolves—from a very large number of 124,490 pixels
at the initial iteration to 57,551 points at the final iteration—leading to a reduction rate of
about 216% for the number of different pixels. The process converges to a final value of
the Hamming similarity, at 1− SH = 0.840136 for iteration 1200. This value of similarity
obtained with our method is very remarkable. To the best of our knowledge, no other neural
network-based method reported in the literature so far has achieved this level of matching
for a fractal image using only the initial binary image as the input. At the same time, our
results mean that there is a mismatch of about 16% between the images. This provides an
indication that the method performs very well but could probably be further improved.
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Figure 4. (left–right, top–bottom): Evolution of the reconstructed image for 0–380 iterations (step
size, 20 iterations).
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Figure 5. (left–right, top–bottom): Evolution of the reconstructed image for 400–780 iterations (step
size, 20 iterations).
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Figure 6. (left–right, top–bottom): Evolution of the reconstructed image for 800–1180 iterations (step
size, 20 iterations).
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Figure 7. (left–right, top–bottom): Evolution of the intersection between the original and the recon-
structed images for 0–380 iterations (step size, 20 iterations).
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Figure 8. (left–right, top–bottom): Evolution of the intersection between the original and the recon-
structed images for 400–780 iterations (step size, 20 iterations).
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Figure 9. (left–right, top–bottom): Evolution of the intersection between the original and the recon-
structed images for 800–1180 iterations (step size, 20 iterations).
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Figure 10. (left–right, top–bottom): Evolution of the union between the original and the recon-
structed images for 0–380 iterations (step size, 20 iterations).
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Figure 11. (left–right, top–bottom): Evolution of the union between the original and the recon-
structed images for 400–780 iterations (step size, 20 iterations).
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Figure 12. (left–right, top–bottom): Evolution of the union between the original and the recon-
structed images for 800–1180 iterations (step size, 20 iterations).
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Table 1. Evolution over the generations (iter) of the number of different pixels between the original
image and the reconstructed images (I 6= R) and the similarity rate (1− SH).

iter I 6=R 1−SH iter I 6=R 1−SH iter I 6=R 1−SH

0 124,490 0.654194 400 73,862 0.794828 800 76,166 0.788108

20 98,949 0.725142 420 73,462 0.795939 820 75,293 0.790853

40 91,295 0.746403 440 77,395 0.785014 840 73,471 0.795914

60 87,760 0.756222 460 75,033 0.791575 860 71,392 0.801689

80 85,995 0.761125 480 74,333 0.793519 880 70,191 0.805025

100 82,018 0.772172 500 74,090 0.794194 900 69,386 0.807261

120 79,734 0.778517 520 73,809 0.794975 920 69,748 0.806256

140 79,378 0.779506 540 73,675 0.795347 940 68,745 0.809042

160 78,553 0.781797 560 73,255 0.796514 960 67,943 0.811269

180 78,114 0.780239 580 72,105 0.792569 980 67,748 0.811811

200 77,582 0.784494 600 72,627 0.799708 1000 66,850 0.814306

220 75,410 0.790528 620 72,599 0.798258 1020 65,969 0.816753

240 74,693 0.792519 640 73,439 0.798336 1040 65,295 0.818625

260 73,954 0.794572 660 73,558 0.796003 1060 65,869 0.817031

280 73,626 0.795483 680 72,219 0.795672 1080 64,776 0.820067

300 73,551 0.795692 700 72,841 0.799392 1100 63,046 0.824872

320 72,172 0.799522 720 72,214 0.797664 1120 62,897 0.825286

340 73,999 0.794447 740 74,251 0.799406 1140 61,036 0.830456

360 74,667 0.792592 760 77,714 0.793747 1160 59,856 0.833733

380 74,256 0.793733 780 76,281 0.784128 1180 57,551 0.840136

6.4. Comparison with Other Approaches

As remarked in Section 1.2, a few methods have been applied to the IFS inverse
problem with modest success. In this comparative work, we consider four of the most
popular alternative methods: an artificial neural network [39], simulated annealing [44],
genetic algorithms [45], and the firefly algorithm [46]. These methods have been chosen to
represent different families of methods. The artificial neural networks are one of the most
popular and widely used approaches in artificial intelligence; simulated annealing is one the
most popular single-particle methods; genetic algorithms are the best known evolutionary
methods; and the firefly algorithm is a recent yet popular population-based nature-inspired
swarm intelligence method. For the neural network, we consider a multilayer perceptron
(MLP), which is well-known to be a universal function approximator. In our comparative
work, we consider an MLP with 12N neurons, with N being the number of contractive
maps of the IFS. To make the comparison as fair as possible, for the genetic algorithms and
the firefly algorithm, we consider a population of 6N individuals (as many as the number
of neurons in our method). We also consider a total of 1200 iterations (as many as the
number of iterations in our method) for the MLP, genetic algorithms, and firefly algorithm
methods. On the other hand, we consider a total of 6N × 1200 iterations for the simulated
annealing to balance the drawback of using only a single particle and use a number of
evaluations of the fitness function, similar to the other methods.

Table 2 shows the comparative results between the similarity rate values of the four
alternative methods and the method proposed in this paper. The results show that our
proposed method outperforms the other methods used in this comparison. This is a clear
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evidence of the advantages of the presented method in addressing the IFS inverse problem.
We remark, however, that the method is not yet optimal, and more accurate methods should
be expected to appear in the future.

Table 2. Comparative results between our method and four alternative approaches in the literature
(the best result is in bold).

Method Similarity Rate

Multilayer perceptron [39] 0.3287

Simulated annealing [44] 0.2516

Genetic algorithms [45] 0.6783

Firefly algorithm [46] 0.4423

The proposed method 0.8401

6.5. Computational Issues and CPU Times

Regarding the computational times of our approach, they depend on the complexity
of the input image, the number of contractive maps, the number of iterations, the error
threshold (if any), and other factors. As a consequence, it is difficult to determine the CPU
time of a given example in advance. However, our trials on several examples show that
a typical execution can take from a few minutes to 2–3 h (including the learning phase),
depending on the factors indicated above. These CPU times are competitive with the
reported times of other alternative methods, although a direct comparison is difficult in
some cases as some of the papers were published some time ago. In any case, we noticed
that the method is time-consuming and hence unsuitable for real-time applications or
practical settings requiring a very fast result. This is one of the limitations of this work; our
focus in this paper is on accuracy rather than on the computational speed.

All simulations in this work were performed using a computer code implemented by
the authors on the popular scientific program Mathematica, running on a personal computer
with a 3.7 GHz Intel Core i7 processor and 8 GB of RAM.

6.6. Computational Complexity

Regarding the computational complexity of the method, the execution of each func-
tional network at each iteration requires 4 sums and 10 products, and hence shows linear
complexity. The computation is performed for N functional networks and for the p× q
pixels of the image, so the complexity becomes O(N(p× q)). Considering a number of M
iterations, it yields a total of O(M.N(p× q)), excluding rendering. This improves the com-
putational complexity of the multilayer perceptron (MLP) neural network (a well-known
universal function approximator), which becomes O(n2.M.(p× q)) for this problem and
where n is the number of neurons. For a more complete comparison, we also consider state-
of-the-art evolutionary methods such as genetic algorithms or particle swarm optimization.
The computational complexity of the genetic algorithms is O(M(N.S + N.S + N)), where
M is the number of generations, N the population size, and S the size of each chromosome,
which in this case yields a total of O(M(2N(p× q) + N)), leading to longer computational
time than that required by our method. The same happens with particle swarm optimiza-
tion, with a computational complexity of O((2M.N + 5M + 3)(p× q) + (M − 1)N + 6)
for the problem in this paper. The results show that while the order of the computational
complexity is comparable for genetic algorithms, particle swarm optimization, and our
method (order O(M.N(p× q)) for the three methods), the total number of operations is
lower for our method.

7. Conclusions and Future Work

In this work, a new method for solving the problem of image reconstruction of binary
images with IFS is proposed. The method is based on functional networks, a kind of artificial
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network that extends the classical neural networks in several ways. In this paper, we use
an artificial network that is comprised of several functional networks. Each functional
network computes the IFS parameters of one of the contractive affine functions as part of
the IFS. A challenging example of a binary fractal image with a complex shape is used
to check the performance of the proposed method. The graphical results show that the
method performs very well as the general visual structure and all major graphical details
are reconstructed with high accuracy. The numerical results confirm the good visual results
but also shows that the method still provides sub-optimal results that can probably be
further improved.

Several future lines of research can be proposed based on this work. A major open
question is how to improve the accuracy of the reconstruction method. The combination of
this technique with local search methods might improve the search ability of the optimal
values, especially at later stages of the method, when the values are in the neighborhood
of the optima. Another challenge is the reduction of the computation time of the method.
In our implementation, we did not apply any strategy for parallelization. However, we
remark that the N functional networks can work in parallel, as they actually compute values
of different contractive maps, which are then combined to form the IFS. This represents
a promising avenue for drastically reducing CPU times. Finally, the functional networks
here work as building blocks of a more general artificial network. Following this idea,
the functional networks might also be embedded into deep learning methodologies, where
several layers of functional networks could be used to improve the learning capabilities of
the network. Finally, the extension of this method to non-binary images is also part of our
plans for future work in the field.
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