
Game Feature Validation of a Real-Time Game
Space with an eXtended Classifier System

Damijan Novak
Faculty of Electrical Engineering and Computer Science

University of Maribor

Maribor, Slovenia
damijan.novak@um.si

Iztok Fister Jr.
Faculty of Electrical Engineering and Computer Science

University of Maribor

Maribor, Slovenia
iztok.fister1@um.si

Abstract— The objective of this paper is the proposal of a

new approach for the game feature validation of a game space

with the eXtended Classifier System (XCS) algorithm. For

initial “proof-of-concept” evaluation we used the game space of

the Tic-Tac-Toe game, which was placed in a context of real-

time characteristics. Evaluation was done with the XCS

algorithm without pre-processing internal knowledge

programmed (online mode). Evaluation data results were

acquired under real-time constraints. No-loss-strategy was

implemented for the game, with various scenarios tested to find

out if the algorithm has the capability of finding invalid game

feature design flaws. Results indicated that the XCS algorithm

is able to deliver stable validation of game feature testing results,

can be a powerful tool and, therefore, worthy of further

research in the Gaming domain. Confirmation of this core

concept testing with this type of algorithm (and similar ones) is

necessary, since it paves the way for further research in more

complex game environments, where the dimension size, the

number of aspects, game states and game actions rises intensely.

Keywords— Artificial Intelligence in Games, Game Feature,

Game Feature Validation, Game Space, No-Loss-Strategy, XCS.

I. INTRODUCTION

Development of a new game (space) is a very complex
process. It depends on three factors: The time (needed to
complete the project), human resources and the scope of the
project [1]. The time needed to complete the project is often
fixed (i.e. the game or product must be released in the time
promised to the gamers). Scope also cannot be changed easily
(it is set in advance by a Game Design Document (GDC),
which specifies core gameplay, game elements, necessary
Game Features (GF), etc. [2]). The resources component is,
therefore, a variable that can be affected in two ways. Either
we raise the number of developers working on the project, or
we extend their working hours. As a consequence, the price of
the project may be higher, and milestones coming to an end
will increase developers` workload and stress (crunch time),
which brings a negative influence [3].

Creating a new game space is quite a challenge, because
testing it is, due to the complexity of game spaces, certainly
not an easy task [4]. Also, the automatic game testing is a
largely untouched niche, and it still relies mainly on manual
testing [5], and manual testing is usually inefficient and
subjective [6]. Fortunately, we can observe increasing
research interest in the domain of Automated Game Testing
(e.g. game agents based on AI methods, like Sarsa and MCTS,
which were transformed for the game testing purposes [7], or
modern frameworks for autonomous video game playing [8]).

In this paper, we tackle the time-consuming game space
validation problem with a “proof-of-concept" utilization of
automated validation of GF of a Tic-tac-toe game space
through the usage of an eXtended Classifier System (XCS)

algorithm. XCS is a Reinforcement Learning (RL) type of an
algorithm [9]. We utilize the XCS algorithm for indirect
checking if all the necessary GF work is as specified and
intended, while the algorithm is learning to play the game
across all the game paths. We also focus on obtaining results
in real-time. By real-time we are not referring to hard, but to
the soft real-time (games can be considered as soft real-time
applications [10]), where an agreed foreseeable time value is
set. In soft real-time, if the result is received after the agreed
time limit, the result is still useful, only its quality can
deteriorate with passing time.

II. GAME FEATURE

In the study of Heintz and Law [11], they defined GF as
the following: “Game features is a generic term used to refer
to differences and similarities between games, which is further
refined by the terms ”game elements” and ”game
attributes”…”, and in the study of Sicart [12] the Game
Mechanics (GM) were defined as: “Game mechanics are
methods invoked by agents for interacting with the game
world”. Both definitions become connected or linked
inextricably, after the implementation phase is complete (i.e.
the cycle of their beginning definement in GDC until their
final implementation is complete). GM connects with each
other the game rules, the game objects and their properties
(included is the correct usage of the game object), and the
game environment, so that immersive game scenarios are
created where a player can progress through the game in a
predictive way [13]. In such a scenario, game feature becomes
the holder, or reflects the specific characteristic of the game
[14] (e.g. A game object wall for which the GM defined
indestructibility becomes the important game feature placed
in the story of a prison break). GF can be divided in a group
of functional and a group of non-functional requirements [15].
Functional requirements are those that define the basic system
behavior, like what the system can and cannot do [16]. Non-
functional requirements, however, specify how, or in which
way, the system should do that (e.g. what the emotional
reaction should be like when playing a game, or when the
specific game feature is activated) [17]. With this work, we
focus on the group of functional requirements, as they are
measurable (the exact output is provided / expected for a given
input).

III. TIC-TAC-TOE GAME SPACE

The basic Tic-Tac-Toe game is played on a map consisting
of 9 (3x3) cells, where each cell can be either empty, or
occupied by a cross/circle. In every non-final game state, the
player whose turn it is, can execute an action of positioning
his/her game element (cross or circle) into an empty cell. Fig.
1 presents one such game state of the game space Tic-tac-toe,
with two elements already positioned and with seven empty
cells (2, 3, 4, 5, 6, 7 and 8).

INES 2021 • 25th International Conference on Intelligent Engineering Systems • July 7-9, 2021 • Budapest, Hungary

978-1-6654-4499-6/21/$31.00 ©2021 IEEE 000095

20
21

 IE
EE

 2
5t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
te

lli
ge

nt
 E

ng
in

ee
rin

g
Sy

st
em

s (
IN

ES
) |

 9
78

-1
-6

65
4-

44
99

-6
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IN

ES
52

91
8.

20
21

.9
51

29
21

Authorized licensed use limited to: University of Maribor. Downloaded on January 17,2022 at 17:49:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. One example of the Tic-Tac-Toe game state.

Let us define a full search space (also known as state-space
[18]) as a set S, which holds all the states of all possible
configurations of the game map. Set S therefore holds 39
(19.683) states. If we proceed and include the game elements
into the sets of states and actions, the states and actions form
syntactical and semantical connections, on the basis of which
the search space can be reduced. This means we are only left
with the legal states and legal actions (i.e. only the actions that
are allowed to be executed in a specific state [19]). From the
whole state-space of the game Tic-Tac-Toe (19.683), we are
left with 5.478 legal states, after the illegal ones have been
excluded (e.g. six crosses present on the game board, but no
circles).

The legal (reduced) game search space can now be defined
as set S, which contains only the legal layouts of the game
board that can be achieved from the starting position of the
game [20]. Also, for the set of actions A in such a space, the
following applies: If, over a state Si ∈ S, ∨ i > 0, we can only
perform the legal moves (actions) ASi, then A is defined as A
= {AS1, AS2, …., ASn}, where n is the number of all the legal
states contained in the set S. Sometimes such a reduced game
search space is connected closely to the term decision
complexity, where traversing through the search space are
made (with close attention to the game definitions/rules) in
search of the optimal strategies [21], but the whole thing can
be subjective, on account of the different game rules (players
can play the same types of board games, but by following
different variations of the game rules).

The full (and sometimes even reduced) search spaces can
be overwhelming from the available computer resources
standing, so an understanding of the workings of the core
“proof-of-concept" research examples, such as we are trying
to achieve with this article of game feature validation with
XCS, is in our opinion, surely needed. The low number of
legal games and useful states, on the other hand, make it
possible to represent the whole game in the memory as a game
tree without any restrictions (a full game tree of Tic-Tac-Toe
inside the memory [22][23]). Such a game tree can be built,
even with the basic algorithms (e.g. Minimax algorithm), and,
during creation, we can make optimizations regarding the
lower computer resources usage, by only focusing on the
optimal (or useful) game strategies [24]. A no-loss strategy
can be identified out of the useful set of the optimal game
strategies. If both players choose to play with a no-loss
strategy, the game will always end in a tie.

IV. EXTENDED CLASSIFIER SYSTEM

A. General description

The XCS algorithms belong to the group of Learning
Classifier Systems (LCS), which are rule-based systems [25].
Rules are kept in a population set, which (as a whole set)
represents the candidate solution to the problem. In the LCS

domain the rules (called classifiers) are presented in the form
of “IF condition THEN action”. Condition is a vector, and it
represents one form of the environment, while the action part
stands for the action that the classifier is propagating. The
vector of the condition can be a mix of bits (0 and 1) and #’s
(don’t care, or not relevant bits). The # symbol is introduced
with the purpose of conditions being able to generalize (e.g.
the condition 1#0 represents 110, as well as 100). LCS’s learn
and evolve new classifiers through interaction with the
environment (i.e. by executing actions for which the
indication of the value of the action, called reward, is
received). For the purpose of interaction with the
environment, the LCS algorithms usually utilize the help in
the form of an environment programme (acting as an interface
between the LCS algorithm and the environment), and
reinforcement programme (to provide the LCS algorithm with
a suitable reward while interacting with the environment). In
the basic form, the environment programme provides the LCS
algorithm with input information (also called sensory
information), and the LCS algorithm outputs an action which
the environment programme executes in the environment. The
reinforcement programme’s role is to use an evaluation
function for scoring the environment (game state).

For this article we chose the XCS algorithm, because the
literature shows [26] that it can learn a state-value function
over the complete state-action space through efficient
generalizations. We implemented the XCS algorithm by
following the detailed specifications presented in the work of
Butz and Wilson [27]. The XCS classifiers also hold
additional parameters, which are, otherwise, not used in all the
LCS algorithms, but they contribute importantly to the XCS’s
efficient generalizations. These additional parameters are:
Prediction estimate (payoff that we can expect if the condition
of the classifier will match the environment input), prediction
error (estimates the errors made in the prediction) and
experience (a counter of how many times the classifier has
belonged to the set of chosen (propagating) actions). Also,
inside the XCS classifier, we have an important parameter of
fitness. Fitness tells us how accurate the prediction estimate
is, since we are not just interested in the prediction estimate,
but also in how accurate this prediction is.

B. Syntactic and Semantic Validation of Classifiers

If we want to connect the XCS algorithm successfully to
the game space of Tic-Tac-Toe, we need to have the
syntactically and semantically valid classifiers [28]. The
validation is needed, because otherwise an XCS cycle could
get stuck, or wouldn’t generalize efficiently. The invalidness
of classifiers can occur as a result of the random classifier
creation (e.g. random creation of the population set), while
executing classifier covering (which can occur during match
set creation), or during the execution of the genetic algorithm
(crossover operations).

With the syntactic validation we therefore ensure that the
condition of the classifier (represented as one variation of the
game state), and the action, which will be executed upon the
game state, are compatible. Namely, it checks two things.
First, if the cell, which is a part of the game state represented
in the condition and on which the element is going to be
placed, is free, and second, if the number of placed crosses on
the board does not differ by more than one compared to the
number of placed circles (this would violate the rules of the
game). With semantic validation we make sure if the chosen
action of an XCS algorithm can be executed on the live game

D Novak and I. Fister Jr. • Game Feature Validation of a Real-Time Game Space with an eXtended Classifier System

000096

Authorized licensed use limited to: University of Maribor. Downloaded on January 17,2022 at 17:49:35 UTC from IEEE Xplore. Restrictions apply.

state (e.g. we test if we are putting a symbol on the empty cell).
Meaning, the semantic validation is not performed on the
condition, but always on the live game state (the state of the
environment). If the classifier during either validation doesn’t
check out, such a classifier is disregarded for future use.

V. VALIDATION COMPONENT

A. Design of the Validation Component

Game agents are vital parts of many games [29], with the
main assumption of their function being intelligent and
rational [30], so they can usually be seen in the role of
intelligently controlled game characters [31]. Such intelligent
agents are designed to be good performers while playing the
game, so we would like to use them for GF validation as well.
It is advised that, for validation purposes, a game agent has
good implementation design of interfaces for inputs (game
states) and outputs (e.g. actions to play with), as well as being
built in a component fashion. This way the game agent is
connected easily to the game environment. Also, we can
observe clearly what a game agent received as input, and what
its actions were in regard to that input.

To validate GF with a game agent, we need to adapt its
game-playing mechanics for the play-testing purpose. In our
case, we created and used the game constituent part we call a
non-invasive component. The component`s purpose is to
observe and measure the game agents behavior (when it is
involved actively with the environment), and what
consequences its game actions have on the game state.

The non-invasive component is summed up in the
following steps:

1. Acquiring the values of a measure: The component
needs the measured data about the agent`s workings
(actions that were performed) and information about
the game state (state of the game map and positions of
all the game objects on it – crosses and circles).

2. Executing of the internal method designed to validate
the specific game feature: From the previous step the
method receives the measured data as input
parameters. The method is the center piece and crucial
part of the component. It follows the agent`s behavior
iteratively, and uses the acquired information about
the impact of the executed actions on the game state,
with the purpose of overwatching if there was a
breach of validity of the game feature. Iteration
(transition of one game state to another) is executed
after the execution of actions by both players. The
breach of validity is tested by the conditional
statement.

3. Design and execution of the conditional statement:
(With every iteration of the game state) the
conditional statement checks if the new game state is
breaking the design (purpose) of the game feature
(e.g. part of the map which should always be empty is
now occupied). Note: “With every iteration of the
game state” was put into squares, because not all the
GF require to be tested with every game state, but it
depends mainly on what the game functionality
specifies or requires explicitly. If the game feature
specifies that the player must not lose a game in a
specific scenario, it is only logical that we test the
game feature with a conditional statement after the
game is over (on the last game state).

4. Execution of the conditional statement`s condition:
The conditional statement is the holder of the
condition which is compared against the measured
values. The condition must always return false, which
states that the game feature is valid, because the
condition testing for invalidity was not successful
(e.g. the conditional statement holds the condition
which is responsible for checking if the specific part
of the map is empty – the measured value is the state
of the map). If the condition is true, the game feature
is, therefore, invalid (the game developer will have to
correct the problem).

We refer to the XCS algorithm when connected to the
game for the purpose of playing, and when it has been
overseen by a component non-intrusively, as a play-testing
agent.

B. The conditional statement: The make-up of the condition

Depending on the type of measured values, the design of
the condition can be performed in a simple or in a complex
way (e.g. by categorizing the individual enemy units into
groups and checking the points of interest). In a simple way
we use the measured values which are of a basic data type, and
where the comparison against the condition can be direct (e.g.
the player had won: true/false). The processing of not just
basic data types is performed in a complex way, and also with
the complex data types (e.g. dynamic list of game objects).
During the condition checking, we must only be cautious that
the checking of the condition isn’t too time-consuming (e.g.
recursive calls), and that the available execution time would
be surpassed. Time slice, which is the maximum available
time between the transition of one game state to another, could
be surpassed, and the processing of the data needed for the
condition is not necessarily finished.

VI. EXPERIMENT

In the experiment we used the Game Feature, which is
presented in the form of a fully-operational (i.e. without
known bugs) No-loss-strategy method. Then, deliberate bugs
(errors) were inserted into this method. The purpose was to
test the XCS algorithm to see if it discovered successfully,
(through gameplay), that the method was not operating to its
no-loss specifications when the bugs were present.

A. Experimental environment and its settings

Hardware and software environment

The experiment was carried out on an i7-9700 CPU
computer @ 3 GHz (turbo: 4.7) GHz, 8 cores, 32 GB RAM,
OS Windows 10 Pro and Java version 13.0.2 with Integrated
Development Environment (IDE) 2020.2.1 (Community
Edition) programming editor.

Experiment design

During the experiment we used the game space of Tic-
Tac-Toe, which was designed to operate in real-time. Real-
time operation was achieved by not implementing any delays
(hard-coded time slices) between the execution of two actions.
So, as soon as the first player executes an action, it is the
second player`s turn to make its own (and so on, until the game
is finished). The first player is controlled by the XCS
algorithm, and the second player is implemented with a no-
loss-strategy method (Appendix A). Method operation was as
follows: For the chosen symbol (cross or circle) the method
outputs the position of the cell into which the player, who is

INES 2021 • 25th International Conference on Intelligent Engineering Systems • July 7-9, 2021 • Budapest, Hungary

000097

Authorized licensed use limited to: University of Maribor. Downloaded on January 17,2022 at 17:49:35 UTC from IEEE Xplore. Restrictions apply.

the holder of the symbol, should position his/her element. If
we play against a game agent who uses this method, we will
never win. Meaning, our no-loss strategy is comprised of
many optimal sub-strategies, which together form a no-loss
strategy (e.g. if the game has just started, we position the first
element in the center of the game map).

The experiment consisted of two parts. In the first part, the
game space of Tic-Tac-Toe was comprised of only the valid
GF, acting as a test for XCS to confirm the validness of the
no-loss-strategy. When playing against such an opponent, the
XCS algorithm must not win. In the second part, intentional
bugs were introduced into the GF (Table I), making them
invalid, which acted as a test of how successful the XCS was
in finding those bugs. Both experiments were executing
blocks of games, with one block consisting of one million full-
game playouts. The first part of the experiment was run by
executing one block of games, while the second part was run
on two hundred blocks for each of the bugs intentionally
included into the GF.

TABLE I. BUGS INSERTED IN THE NO-LOSS STRATEGY METHOD.

ID

of the

bug

Line numbers

missing from

the method

(starting and

ending

positions)

Short description of a bug

1. 6-8

Opportunity of putting a marker in
position five is not taken, if an opponent
already has one marker on the board and

it is not occupying number five.

2. 9-12
Opportunity of a certain victory in the

next move is not taken.

3. 13-16
Opportunity of preventing a certain

victory for the opponent is not taken.

4. 18-29
Opportunity to prevent the opponent

creating a scissor in the next move is not
taken.

5. 30-33
Opportunity to prevent the opponent

from any future scissor tactics (during the
next moves) is not taken.

6. 34-38 Same description as before.

7. 40-43

Opportunity to block corners (lowering
the search space and possibility of wins

for the opponent) if there is only one
marker on the map that is not taken.

8. 44-62
Similar description as before, but

independent of the number of markers
already present on the map.

The purpose of repeating the execution of blocks two
hundred times was to test the performance of the XCS
algorithm with greater probability of the results being reliable.
In the XCS algorithm, due to the use of random values (e.g.
random placement of the initial population of classifiers), the
result for each block is not always the same. So, if we executed
only a single block, we risked acquiring the exceptionally
(non)successful block measurement (as a result of the
randomness involved in the XCS algorithm), which wouldn’t
be representative. So, with higher block repeats, we could
provide a range of performance evaluation in the form of an
interval, where the limits of the interval were determined by
the most successful and least successful blocks.

After the execution of each block, all the internal values of
the XCS algorithm, as well as its supporting programmes,
were reset to the starting values (reinitialization of all the
values). This ensured that the knowledge stored in the

population of the XCS algorithm was not transferred between
the blocks, and that the execution of the blocks was
independent of each other.

Data acquired during the experiment

During the experiment, the following data were acquired
(per each block):

• the consecutive number of the game in which the
irregularity of the game functionality was first
discovered,

• the number of all confirmations of the invalid game
feature, and

• the time needed for completion of each block (the
time measurements provided us with information if it
was possible to validate the game space in real-time).

The upper bound of time, where the real-time
measurement during one block execution is still acceptable,
was set to a reasonable one minute [32].

Parameter settings of the XCS algorithm

The parameter setting of the XCS algorithm have to be set
before the XCS cycle begins, and they stay static during the
execution phase. We set the following values: NP = 100
(population size), α = 0.1 (learning rate for updating ρ), β =
0.2 (learning rate for p, ε and f), γ = 0.71(discount factor of
the reward), δ = 0.1 (below this value, the fitness of a classifier
may be considered in its probability of deletion, so, in other
words, it specifies the fraction of the mean fitness in [P]), ε0
= 10 (the error below which classifiers are considered to have
equal accuracy), θGA = 25 (GA threshold), θdel = 20 (deletion
threshold), ν = 5 (power parameter), χ = 0.5 (crossover
probabilities), μ = 0.01 (mutation probability), θsub = 20
(subsumption threshold), P# = 0.33 (probability of using a #
in one attribute in a condition when covering), pI = εI = fI = 0
(used as initial values in new classifiers), pexp = 0.02
(exploration probability), [A] subsumption and GA
subsumption were set to false.

The values were set during the initial pre-testing of the
algorithm, with the goal of XCS having the optimal
performance through hand-settings, but, for now, they weren’t
optimized by any of the advanced algorithmic methods [33].

Map coding Table for the Tic-Tac-Toe

The condition of classifier and sensory information (input
of the environment) must be of the same length and of the
same representation to be comparable. They are both built
upon the representation of the game map, meaning the
encoding is done by representing each state of the cell of the
map in a binary form (Table II). A cell is represented with two
bits. The two-dimensional map of Tic-Tac-Toe is, after
completed encoding, presented as a binary vector of the size
18 (9 cells x 2 bits per cell).

TABLE II. MAP CODING TABLE FOR THE TIC-TAC-TOE.

State of the cell
Representation in bits (2 bits per

cell)

Cell is empty (not occupied) 0 0

Cell is occupied by a cross (X) 0 1

Cell is occupied by a circle (0) 1 0

Non-relevant cell (set with don`t
care flag in the classifier condition)

1 1

D Novak and I. Fister Jr. • Game Feature Validation of a Real-Time Game Space with an eXtended Classifier System

000098

Authorized licensed use limited to: University of Maribor. Downloaded on January 17,2022 at 17:49:35 UTC from IEEE Xplore. Restrictions apply.

No-loss strategy game feature and its settings for the
experiment

To test the validity of the Game Feature, implemented as
a No-Loss-Strategy method in Appendix A, we must first
define the conditional statement and its condition (measured
values are the end state of the game – defeat or tie). They were
as follows:

if resultOfTheGame not defeat and resultOfTheGame not tie
then

 // game feature is not valid

end if

If the result of the game is not defeat and, at the same time,
it isn’t a tie, the game for the player who plays against the
NoLossStrategy method resulted in a win (meaning the
condition is true, and game feature therefore being invalid).
We pre-tested the implementation of the NoLossStrategy
method with 100 million playouts by the XCS algorithm, and
additionally with one million playouts by a basic MCTS
(UCT) reinforcement learning algorithm [34]. None of the
playouts resulted in a win (game feature was always valid).

VII. RESULTS AND DISCUSSION

We can confirm that the XCS algorithm was successful in
finding invalid GF caused by bugs in the allotted time, and
every bug had multiple confirmations per each block, as
shown in Table III.

TABLE III. RESULTS OF THE EXPERIMENT.

ID

of the

bug

Consecutive

number of the

game where XCS

first confirmed

invalid game

feature [min.

cons. num. of

most succ. block,

max. cons. num.

of least succ.

block]

(The lower the

values the better.)

The number of

all

confirmations

of the invalid

game feature in

the block

 [min. num.

conf. of least

succ. block,

max. num.

conf. of most.

succ. block]

(The higher the

values the

better.)

Time needed to

execute the block

in

seconds

 [min. time. of

most. succ. block,

max. time. of

least succ. block]

(The lower the

values the better.)

1. [1, 1784] [38413, 60621] [32.651, 33.893]

2. [45, 109330] [135, 1200] [29.737, 31.706]

3. [1, 2]
[920156,
930109]

[23.963, 25.699]

4. [1259, 504222] [4, 339] [30.819, 33.267]

5. [20, 17783] [1329, 3240] [30.371, 33.191]

6. [1, 91558] [65, 154] [30.154, 33.132]

7. [24, 22855] [254, 470] [29.945, 31.553]

8. [11, 13322] [3701, 7616] [31.256, 32.602]

The most successful Game Feature validation was the bug
with the ID 3. The invalidity of the game feature always
happened on the first or at the second consecutive game run at
the latest; it reached the highest number of confirmations per
single block (interval being [920156, 930109]) and in the
lowest amount of time. The least successful (but still
successful) game feature validation was at the bug with the ID
4. Here, the lowest number of confirmations of the invalid
game feature was four, with the greatest interval range ([1259,
504222]. Maximum recorded time during the experiment was

33.893 s, which was well under the limit of one minute of soft
real-time per block.

The consecutive numbers and the numbers of all
confirmations were quite varied between the different inserted
bugs. This was somewhat expected, because the bugs were
connected closely to the search-space. Some bugs are more
common to be found, and some occur rarely during the game,
meaning only when an XCS algorithm is traversing through
the niche parts of the game (i.e. only in a few sub-search-
spaces), and that can sometimes take many tries. Nevertheless,
the XCS algorithm identified the bugs successfully, regardless
of them occurring in common or niche search space paths, and
it also confirmed them multiple times per each block. This
confirms our beliefs that XCS is a suitable candidate for
testing and research in more complex game spaces and their
GS.

VIII. CONCLUSION

In this paper, we proposed the XCS algorithm for the task
of Game Feature validation of the real-time game space of
Tic-Tac-Toe. The important game feature of No-loss-strategy
was implemented inside this game space. Then, various bugs
were inserted into the No-Loss-Strategy method, and tested by
the XCS algorithm, which was under the supervision of the
non-invasive validation component. Experiments revealed,
that XCS identified all the invalid GF successfully, and it did
so in the real-time that was defined. This serves us as a proof-
of-concept that the XCS algorithm can be a capable tool for
validation of game spaces, and that it can act in online mode
(without prior learning knowledge of the environment).

Therefore, our future work will focus on game genres
which enclose game spaces of higher computational
complexity [35]. Specifically, we want to test our
methodology of Game Feature validation with the XCS
algorithm on game spaces which include maps of higher
resolution (e.g. 32 x 32 cells), game actions with more
diversity (i.e. durative game actions and simultaneous moves),
and with more than one type of game unit available (i.e. in
Tic-Tac-Toe the only choice for the player is to “operate” one
game unit, cross or circle).

The durative game actions and simultaneous moves are
some of the main differences between classical board games
and complex game genres (e.g. Real-Time Strategy games)
[36]. The XCS algorithm in its current state only outputs one
best action of its choosing, so it does not support choosing of
multiple actions simultaneously. Therefore, incorporating
game actions with higher diversity in the XCS algorithm will
be challenging.

We envision creating a game agent, which has its internal
structure designed for the operation of multiple XCS
algorithms, and will be capable of handling all the game units
on the map simultaneously, each with its own distinct actions.
It will also be necessary for a game agent to incorporate more
complex syntactic and semantic validations of classifiers, as
well as a game state evaluation and reward system of higher
complexity.

Combining the power of adaptive algorithms, such as an
XCS algorithm, for the purpose of the playtesting of GF, could
eventually help with many tasks that are currently manual
labor intensive in the game design. This way we could
possibly open ways for not only faster and cheaper creations
of games, but also for the possibility of creating different

INES 2021 • 25th International Conference on Intelligent Engineering Systems • July 7-9, 2021 • Budapest, Hungary

000099

Authorized licensed use limited to: University of Maribor. Downloaded on January 17,2022 at 17:49:35 UTC from IEEE Xplore. Restrictions apply.

varieties of the same game (i.e. validating the same GF with
different criteria), with a lower number of bugs and higher
user gameplay satisfaction.

ACKNOWLEDGMENT

The authors acknowledge the financial support from the
Slovenian Research Agency (Research Core Funding No. P2-
0057).

REFERENCES

[1] C. Buhl, and F. Gareeboo, “Automated testing: a key factor for success
in video game development. Case study and lessons learned,” in Proc.
PNSQC 2012, pp. 1-15, 2012.

[2] M. G. Salazar, H. A. Mitre, C. L. Olalde, and J. L. G. Sánchez,
“Proposal of Game Design Document from software engineering
requirements perspective,” in Conference on CGAMES 2012, pp. 81-
85, 2012.

[3] H. Edholm, M. Lidstrom, J. P. Steghöfer, and H. Burden, “Crunch
Time: The Reasons and Effects of Unpaid Overtime in the Games
Industry,” in ICSE-SEIP 2017, pp. 43-52, 2017.

[4] C. Redavid, and A. Farid, “An overview of game testing techniques,”
Västerås: sn, 2011.

[5] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng, Y. Liu, R. Shen, Y.
Chen, and C. Fan, “Wuji: Automatic online combat game testing using
evolutionary deep reinforcement learning,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
IEEE, pp. 772-784, 2019.

[6] L. K. Chen, Y. H. Chen, S. F. Chang, and S. C. Chang, “A Long/Short-
Term Memory Based Automated Testing Model to Quantitatively
Evaluate Game Design,” Applied Sciences 10(19): 6704, 2020.

[7] S. Ariyurek, A. Betin-Can, and E. Surer, “Automated Video Game
Testing Using Synthetic and Human-Like Agents,” IEEE Transactions
on Games, IEEE, 2019.

[8] J. Pfau, J. D. Smeddinck, and R. Malaka, “Automated game testing
with icarus: Intelligent completion of adventure riddles via
unsupervised solving,” in Extended Abstracts Publication of the
Annual Symposium on Computer-Human Interaction in Play, pp. 153-
164, 2017.

[9] M. V. Butz, D. E. Goldberg, and P. L. Lanzi, “Gradient descent
methods in learning classifier systems: Improving XCS performance in
multistep problems,” IEEE Transactions on Evolutionary
Computation, 9(5), IEEE, pp. 452-473, 2005.

[10] B. M. Zamith, L. Valente, and E. Clua, “Game loop model properties
and characteristics on multi-core cpu and gpu games,” SBGames 2016,
2016.

[11] S. Heintz, and E. L. C. Law, “Digital educational games:
methodologies for evaluating the impact of game type,” ACM
Transactions on Computer-Human Interaction (TOCHI) 25(2), pp. 1-
47, 2018.

[12] M. Sicart, “Defining game mechanics,” Game Studies 8(2), n, 2008.

[13] R. J. Mislevy, S. Corrigan, A. Oranje, K. DiCerbo, M. I. Bauer, A. von
Davier, and M. John, “Psychometrics and game-based assessment.
Technology and testing: Improving educational and psychological
measurement,” pp. 23-48, 2016.

[14] R. DeRouin-Jessen, “Game on: The impact of game features in
computer-based training,” 2008.

[15] V. T. Sarinho, G. S. de Azevedo, and F. M. Boaventura, “Askme: A
feature-based approach to develop multiplatform quiz games,” in 2018
17th Brazilian Symposium on Computer Games and Digital
Entertainment, SBGames, IEEE, pp. 389-398, 2018.

[16] L. T. G. Ferreira, “Eye Tracking User Interface,” 2020.

[17] C. Alves, G. Ramalho, and A. Damasceno, “Challenges in
requirements engineering for mobile games development: The
meantime case study,” in 15th IEEE International Requirements
Engineering Conference (RE 2007), IEEE, pp. 275-280, 2007.

[18] H. J. Van Den Herik, J. W. Uiterwijk, and J. Van Rijswijck, “Games
solved: Now and in the future,” Artificial Intelligence 134(1-2), pp.
277-311, 2002.

[19] J. Baxter, A. Tridgell, and L. Weaver, “Learning to play chess using
temporal differences,” Machine Learning 40(3), pp. 243-263, 2000.

[20] L. V. Allis, “Searching for solutions in games and artificial
intelligence,” Wageningen: Ponsen & Looijen, pp. 21-152, 1994.

[21] C. Xu, Y. Zhao, and J. F. Zhang, “Decision-implementation complexity
of cooperative game systems,” Science China Information Sciences
60(11): 112201, 2017.

[22] S. D. James, “The effect of simulation bias on action selection in Monte
Carlo Tree Search,” Doctoral dissertation, 2016.

[23] A. Singh, K. Deep, and A. Nagar, “A "Never-Loose" Strategy to Play
the Game of Tic-Tac-Toe,” in 2014 ISCMI, IEEE, pp. 1-5, 2014.

[24] S. G. Diez, J. Laforge, and M. Saerens, “Rminimax: An optimally
randomized MINIMAX algorithm,” IEEE transactions on cybernetics
43(1), pp. 385-393, 2012.

[25] K. Shafi, and H. A. Abbass, “A survey of learning classifier systems in
games,” IEEE Computational intelligence magazine 12(1), pp. 42-55,
IEEE, 2017.

[26] M. V. Butz, D.E. Goldberg, and P.I. Lanzi, “Gradient descent methods
in learning classifier systems: improving XCS performance in
multistep problems,” Illigal Report 2003028, Illinois Genetic
Algorithms Laboratory, 2003.

[27] M. V. Butz, and S. W. Wilson, “An algorithmic description of XCS,”
in International Workshop on Learning Classifier Systems, pp. 253-
272, Springer, Berlin, Heidelberg, 2000.

[28] A. S. Vasilyev, “Classifier systems learning in dynamic environment,”
Scientific proceeding of Riga Technical Unniversity, vol. 5,
Datorzinatne, Information technology and management science, 5.
sejums, pp. 175-187, 1999.

[29] M. Jacob, S. Devlin, and K. Hofmann, ““It’s Unwieldy and It Takes a
Lot of Time”—Challenges and Opportunities for Creating Agents in
Commercial Games,” in Proceedings of the AAAI Conference on
AIIDE, vol. 16, no. 1, pp. 88-94, 2020.

[30] S. Kooistra, “Logic in classical and evolutionary games,” 2013.

[31] A. Nurhuda, and R., “Andrea Implementation of Decision Tree
Algorithm on Game Agent of First Aid Educational Game,” in Asian
Conference on Intelligent Information and Database Systems, Springer,
Cham, pp. 313-322, 2019.

[32] D. Stefanovic, and M. N. Stojanovic, “Computing game strategies,” in
Conference on Computability in Europe, Springer, Berlin, Heidelberg,
pp. 383-392, 2013.

[33] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for
hyper-parameter optimization,” in Advances in neural information
processing systems, pp. 2546-2554, 2011.

[34] L. Kocsis, and C. Szepesvári, “Bandit based monte-carlo planning,” in
European conference on machine learning, Springer, Berlin,
Heidelberg, pp. 282-293, 2006.

[35] G. Synnaeve, and P. Bessiere, “Multiscale Bayesian modeling for RTS
games: An application to StarCraft AI,” in IEEE Transactions on
Computational intelligence and AI in Games, 8(4), pp. 338-350, 2015.

[36] A. Uriarte, and S. Ontanón, “Game-tree search over high-level game
states in RTS games,” in Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, 10(1),
2014.

IX. APPENDIX A

D Novak and I. Fister Jr. • Game Feature Validation of a Real-Time Game Space with an eXtended Classifier System

000100

Authorized licensed use limited to: University of Maribor. Downloaded on January 17,2022 at 17:49:35 UTC from IEEE Xplore. Restrictions apply.

INES 2021 • 25th International Conference on Intelligent Engineering Systems • July 7-9, 2021 • Budapest, Hungary

000101

Authorized licensed use limited to: University of Maribor. Downloaded on January 17,2022 at 17:49:35 UTC from IEEE Xplore. Restrictions apply.

D Novak and I. Fister Jr. • Game Feature Validation of a Real-Time Game Space with an eXtended Classifier System

000102

Authorized licensed use limited to: University of Maribor. Downloaded on January 17,2022 at 17:49:35 UTC from IEEE Xplore. Restrictions apply.

		2021-08-13T18:20:51-0400
	Preflight Ticket Signature

