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Abstract— The objective of this paper is the proposal of a 

new approach for the game feature validation of a game space 

with the eXtended Classifier System (XCS) algorithm. For 

initial “proof-of-concept” evaluation we used the game space of 

the Tic-Tac-Toe game, which was placed in a context of real-

time characteristics. Evaluation was done with the XCS 

algorithm without pre-processing internal knowledge 

programmed (online mode). Evaluation data results were 

acquired under real-time constraints. No-loss-strategy was 

implemented for the game, with various scenarios tested to find 

out if the algorithm has the capability of finding invalid game 

feature design flaws. Results indicated that the XCS algorithm 

is able to deliver stable validation of game feature testing results, 

can be a powerful tool and, therefore, worthy of further 

research in the Gaming domain. Confirmation of this core 

concept testing with this type of algorithm (and similar ones) is 

necessary, since it paves the way for further research in more 

complex game environments, where the dimension size, the 

number of aspects, game states and game actions rises intensely. 

Keywords— Artificial Intelligence in Games, Game Feature, 

Game Feature Validation, Game Space, No-Loss-Strategy, XCS. 

I. INTRODUCTION 

Development of a new game (space) is a very complex 
process. It depends on three factors: The time (needed to 
complete the project), human resources and the scope of the 
project [1]. The time needed to complete the project is often 
fixed (i.e. the game or product must be released in the time 
promised to the gamers). Scope also cannot be changed easily 
(it is set in advance by a Game Design Document (GDC), 
which specifies core gameplay, game elements, necessary 
Game Features (GF), etc. [2]). The resources component is, 
therefore, a variable that can be affected in two ways. Either 
we raise the number of developers working on the project, or 
we extend their working hours. As a consequence, the price of 
the project may be higher, and milestones coming to an end 
will increase developers` workload and stress (crunch time), 
which brings a negative influence [3]. 

Creating a new game space is quite a challenge, because 
testing it is, due to the complexity of game spaces, certainly 
not an easy task [4]. Also, the automatic game testing is a 
largely untouched niche, and it still relies mainly on manual 
testing [5], and manual testing is usually inefficient and 
subjective [6]. Fortunately, we can observe increasing 
research interest in the domain of Automated Game Testing 
(e.g. game agents based on AI methods, like Sarsa and MCTS, 
which were transformed for the game testing purposes [7], or 
modern frameworks for autonomous video game playing [8]).  

In this paper, we tackle the time-consuming game space 
validation problem with a “proof-of-concept" utilization of 
automated validation of GF of a Tic-tac-toe game space 
through the usage of an eXtended Classifier System (XCS) 

algorithm. XCS is a Reinforcement Learning (RL) type of an 
algorithm [9]. We utilize the XCS algorithm for indirect 
checking if all the necessary GF work is as specified and 
intended, while the algorithm is learning to play the game 
across all the game paths. We also focus on obtaining results 
in real-time. By real-time we are not referring to hard, but to 
the soft real-time (games can be considered as soft real-time 
applications [10]), where an agreed foreseeable time value is 
set. In soft real-time, if the result is received after the agreed 
time limit, the result is still useful, only its quality can 
deteriorate with passing time. 

II. GAME FEATURE 

In the study of Heintz and Law [11], they defined GF as 
the following: “Game features is a generic term used to refer 
to differences and similarities between games, which is further 
refined by the terms ”game elements” and ”game 
attributes”…”, and in the study of Sicart [12] the Game 
Mechanics (GM) were defined as: “Game mechanics are 
methods invoked by agents for interacting with the game 
world”. Both definitions become connected or linked 
inextricably, after the implementation phase is complete (i.e. 
the cycle of their beginning definement in GDC until their 
final implementation is complete). GM connects with each 
other the game rules, the game objects and their properties 
(included is the correct usage of the game object), and the 
game environment, so that immersive game scenarios are 
created where a player can progress through the game in a 
predictive way [13]. In such a scenario, game feature becomes 
the holder, or reflects the specific characteristic of the game 
[14] (e.g. A game object wall for which the GM defined 
indestructibility becomes the important game feature placed 
in the story of a prison break). GF can be divided in a group 
of functional and a group of non-functional requirements [15]. 
Functional requirements are those that define the basic system 
behavior, like what the system can and cannot do [16]. Non-
functional requirements, however, specify how, or in which 
way, the system should do that (e.g. what the emotional 
reaction should be like when playing a game, or when the 
specific game feature is activated) [17]. With this work, we 
focus on the group of functional requirements, as they are 
measurable (the exact output is provided / expected for a given 
input). 

III. TIC-TAC-TOE GAME SPACE 

The basic Tic-Tac-Toe game is played on a map consisting 
of 9 (3x3) cells, where each cell can be either empty, or 
occupied by a cross/circle. In every non-final game state, the 
player whose turn it is, can execute an action of positioning 
his/her game element (cross or circle) into an empty cell. Fig. 
1 presents one such game state of the game space Tic-tac-toe, 
with two elements already positioned and with seven empty 
cells (2, 3, 4, 5, 6, 7 and 8). 
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Fig. 1. One example of the Tic-Tac-Toe game state. 

Let us define a full search space (also known as state-space 
[18]) as a set S, which holds all the states of all possible 
configurations of the game map. Set S therefore holds 39 
(19.683) states. If we proceed and include the game elements 
into the sets of states and actions, the states and actions form 
syntactical and semantical connections, on the basis of which 
the search space can be reduced. This means we are only left 
with the legal states and legal actions (i.e. only the actions that 
are allowed to be executed in a specific state [19]). From the 
whole state-space of the game Tic-Tac-Toe (19.683), we are 
left with 5.478 legal states, after the illegal ones have been 
excluded (e.g. six crosses present on the game board, but no 
circles). 

The legal (reduced) game search space can now be defined 
as set S, which contains only the legal layouts of the game 
board that can be achieved from the starting position of the 
game [20]. Also, for the set of actions A in such a space, the 
following applies: If, over a state Si ∈ S, ∨ i > 0, we can only 
perform the legal moves (actions) ASi, then A is defined as A 
= {AS1, AS2, …., ASn}, where n is the number of all the legal 
states contained in the set S. Sometimes such a reduced game 
search space is connected closely to the term decision 
complexity, where traversing through the search space are 
made (with close attention to the game definitions/rules) in 
search of the optimal strategies [21], but the whole thing can 
be subjective, on account of the different game rules (players 
can play the same types of board games, but by following 
different variations of the game rules). 

The full (and sometimes even reduced) search spaces can 
be overwhelming from the available computer resources 
standing, so an understanding of the workings of the core 
“proof-of-concept" research examples, such as we are trying 
to achieve with this article of game feature validation with 
XCS, is in our opinion, surely needed. The low number of 
legal games and useful states, on the other hand, make it 
possible to represent the whole game in the memory as a game 
tree without any restrictions (a full game tree of Tic-Tac-Toe 
inside the memory [22][23]). Such a game tree can be built, 
even with the basic algorithms (e.g. Minimax algorithm), and, 
during creation, we can make optimizations regarding the 
lower computer resources usage, by only focusing on the 
optimal (or useful) game strategies [24]. A no-loss strategy 
can be identified out of the useful set of the optimal game 
strategies. If both players choose to play with a no-loss 
strategy, the game will always end in a tie. 

IV. EXTENDED CLASSIFIER SYSTEM 

A. General description 

The XCS algorithms belong to the group of Learning 
Classifier Systems (LCS), which are rule-based systems [25]. 
Rules are kept in a population set, which (as a whole set) 
represents the candidate solution to the problem. In the LCS 

domain the rules (called classifiers) are presented in the form 
of “IF condition THEN action”. Condition is a vector, and it 
represents one form of the environment, while the action part 
stands for the action that the classifier is propagating. The 
vector of the condition can be a mix of bits (0 and 1) and #’s 
(don’t care, or not relevant bits). The # symbol is introduced 
with the purpose of conditions being able to generalize (e.g. 
the condition 1#0 represents 110, as well as 100). LCS’s learn 
and evolve new classifiers through interaction with the 
environment (i.e. by executing actions for which the 
indication of the value of the action, called reward, is 
received). For the purpose of interaction with the 
environment, the LCS algorithms usually utilize the help in 
the form of an environment programme (acting as an interface 
between the LCS algorithm and the environment), and 
reinforcement programme (to provide the LCS algorithm with 
a suitable reward while interacting with the environment). In 
the basic form, the environment programme provides the LCS 
algorithm with input information (also called sensory 
information), and the LCS algorithm outputs an action which 
the environment programme executes in the environment. The 
reinforcement programme’s role is to use an evaluation 
function for scoring the environment (game state).  

For this article we chose the XCS algorithm, because the 
literature shows [26] that it can learn a state-value function 
over the complete state-action space through efficient 
generalizations. We implemented the XCS algorithm by 
following the detailed specifications presented in the work of 
Butz and Wilson [27]. The XCS classifiers also hold 
additional parameters, which are, otherwise, not used in all the 
LCS algorithms, but they contribute importantly to the XCS’s 
efficient generalizations. These additional parameters are: 
Prediction estimate (payoff that we can expect if the condition 
of the classifier will match the environment input), prediction 
error (estimates the errors made in the prediction) and 
experience (a counter of how many times the classifier has 
belonged to the set of chosen (propagating) actions). Also, 
inside the XCS classifier, we have an important parameter of 
fitness. Fitness tells us how accurate the prediction estimate 
is, since we are not just interested in the prediction estimate, 
but also in how accurate this prediction is. 

B. Syntactic and Semantic Validation of Classifiers 

If we want to connect the XCS algorithm successfully to 
the game space of Tic-Tac-Toe, we need to have the 
syntactically and semantically valid classifiers [28]. The 
validation is needed, because otherwise an XCS cycle could 
get stuck, or wouldn’t generalize efficiently. The invalidness 
of classifiers can occur as a result of the random classifier 
creation (e.g. random creation of the population set), while 
executing classifier covering (which can occur during match 
set creation), or during the execution of the genetic algorithm 
(crossover operations).  

With the syntactic validation we therefore ensure that the 
condition of the classifier (represented as one variation of the 
game state), and the action, which will be executed upon the 
game state, are compatible. Namely, it checks two things. 
First, if the cell, which is a part of the game state represented 
in the condition and on which the element is going to be 
placed, is free, and second, if the number of placed crosses on 
the board does not differ by more than one compared to the 
number of placed circles (this would violate the rules of the 
game). With semantic validation we make sure if the chosen 
action of an XCS algorithm can be executed on the live game 
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state (e.g. we test if we are putting a symbol on the empty cell). 
Meaning, the semantic validation is not performed on the 
condition, but always on the live game state (the state of the 
environment). If the classifier during either validation doesn’t 
check out, such a classifier is disregarded for future use. 

V. VALIDATION COMPONENT 

A. Design of the Validation Component 

Game agents are vital parts of many games [29], with the 
main assumption of their function being intelligent and 
rational [30], so they can usually be seen in the role of 
intelligently controlled game characters [31]. Such intelligent 
agents are designed to be good performers while playing the 
game, so we would like to use them for GF validation as well. 
It is advised that, for validation purposes, a game agent has 
good implementation design of interfaces for inputs (game 
states) and outputs (e.g. actions to play with), as well as being 
built in a component fashion. This way the game agent is 
connected easily to the game environment. Also, we can 
observe clearly what a game agent received as input, and what 
its actions were in regard to that input.  

To validate GF with a game agent, we need to adapt its 
game-playing mechanics for the play-testing purpose. In our 
case, we created and used the game constituent part we call a 
non-invasive component. The component`s purpose is to 
observe and measure the game agents behavior (when it is 
involved actively with the environment), and what 
consequences its game actions have on the game state. 

The non-invasive component is summed up in the 
following steps: 

1. Acquiring the values of a measure: The component 
needs the measured data about the agent`s workings 
(actions that were performed) and information about 
the game state (state of the game map and positions of 
all the game objects on it – crosses and circles). 

2. Executing of the internal method designed to validate 
the specific game feature: From the previous step the 
method receives the measured data as input 
parameters. The method is the center piece and crucial 
part of the component. It follows the agent`s behavior 
iteratively, and uses the acquired information about 
the impact of the executed actions on the game state, 
with the purpose of overwatching if there was a 
breach of validity of the game feature. Iteration 
(transition of one game state to another) is executed 
after the execution of actions by both players. The 
breach of validity is tested by the conditional 
statement. 

3. Design and execution of the conditional statement: 
(With every iteration of the game state) the 
conditional statement checks if the new game state is 
breaking the design (purpose) of the game feature 
(e.g. part of the map which should always be empty is 
now occupied). Note: “With every iteration of the 
game state” was put into squares, because not all the 
GF require to be tested with every game state, but it 
depends mainly on what the game functionality 
specifies or requires explicitly. If the game feature 
specifies that the player must not lose a game in a 
specific scenario, it is only logical that we test the 
game feature with a conditional statement after the 
game is over (on the last game state). 

4. Execution of the conditional statement`s condition: 
The conditional statement is the holder of the 
condition which is compared against the measured 
values. The condition must always return false, which 
states that the game feature is valid, because the 
condition testing for invalidity was not successful 
(e.g. the conditional statement holds the condition 
which is responsible for checking if the specific part 
of the map is empty – the measured value is the state 
of the map). If the condition is true, the game feature 
is, therefore, invalid (the game developer will have to 
correct the problem). 

We refer to the XCS algorithm when connected to the 
game for the purpose of playing, and when it has been 
overseen by a component non-intrusively, as a play-testing 
agent. 

B. The conditional statement: The make-up of the condition 

Depending on the type of measured values, the design of 
the condition can be performed in a simple or in a complex 
way (e.g. by categorizing the individual enemy units into 
groups and checking the points of interest). In a simple way 
we use the measured values which are of a basic data type, and 
where the comparison against the condition can be direct (e.g. 
the player had won: true/false). The processing of not just 
basic data types is performed in a complex way, and also with 
the complex data types (e.g. dynamic list of game objects). 
During the condition checking, we must only be cautious that 
the checking of the condition isn’t too time-consuming (e.g. 
recursive calls), and that the available execution time would 
be surpassed. Time slice, which is the maximum available 
time between the transition of one game state to another, could 
be surpassed, and the processing of the data needed for the 
condition is not necessarily finished. 

VI. EXPERIMENT 

In the experiment we used the Game Feature, which is 
presented in the form of a fully-operational (i.e. without 
known bugs) No-loss-strategy method. Then, deliberate bugs 
(errors) were inserted into this method. The purpose was to 
test the XCS algorithm to see if it discovered successfully, 
(through gameplay), that the method was not operating to its 
no-loss specifications when the bugs were present. 

A. Experimental environment and its settings 

Hardware and software environment 

The experiment was carried out on an i7-9700 CPU 
computer @ 3 GHz (turbo: 4.7) GHz, 8 cores, 32 GB RAM, 
OS Windows 10 Pro and Java version 13.0.2 with Integrated 
Development Environment (IDE) 2020.2.1 (Community 
Edition) programming editor. 

Experiment design 

During the experiment we used the game space of Tic-
Tac-Toe, which was designed to operate in real-time. Real-
time operation was achieved by not implementing any delays 
(hard-coded time slices) between the execution of two actions. 
So, as soon as the first player executes an action, it is the 
second player`s turn to make its own (and so on, until the game 
is finished). The first player is controlled by the XCS 
algorithm, and the second player is implemented with a no-
loss-strategy method (Appendix A). Method operation was as 
follows: For the chosen symbol (cross or circle) the method 
outputs the position of the cell into which the player, who is 
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the holder of the symbol, should position his/her element. If 
we play against a game agent who uses this method, we will 
never win. Meaning, our no-loss strategy is comprised of 
many optimal sub-strategies, which together form a no-loss 
strategy (e.g. if the game has just started, we position the first 
element in the center of the game map). 

The experiment consisted of two parts. In the first part, the 
game space of Tic-Tac-Toe was comprised of only the valid 
GF, acting as a test for XCS to confirm the validness of the 
no-loss-strategy. When playing against such an opponent, the 
XCS algorithm must not win. In the second part, intentional 
bugs were introduced into the GF (Table I), making them 
invalid, which acted as a test of how successful the XCS was 
in finding those bugs. Both experiments were executing 
blocks of games, with one block consisting of one million full-
game playouts. The first part of the experiment was run by 
executing one block of games, while the second part was run 
on two hundred blocks for each of the bugs intentionally 
included into the GF. 

TABLE I.  BUGS INSERTED IN THE NO-LOSS STRATEGY METHOD. 

ID  

of the 

bug 

Line numbers 

missing from 

the method 

(starting and 

ending 

positions) 

Short description of a bug 

1. 6-8 

Opportunity of putting a marker in 
position five is not taken, if an opponent 
already has one marker on the board and 

it is not occupying number five.  

2. 9-12 
Opportunity of a certain victory in the 

next move is not taken. 

3. 13-16 
Opportunity of preventing a certain 

victory for the opponent is not taken. 

4. 18-29 
Opportunity to prevent the opponent 

creating a scissor in the next move is not 
taken. 

5. 30-33 
Opportunity to prevent the opponent 

from any future scissor tactics (during the 
next moves) is not taken. 

6. 34-38 Same description as before. 

7. 40-43 

Opportunity to block corners (lowering 
the search space and possibility of wins 

for the opponent) if there is only one 
marker on the map that is not taken. 

8. 44-62 
Similar description as before, but 

independent of the number of markers 
already present on the map. 

  

The purpose of repeating the execution of blocks two 
hundred times was to test the performance of the XCS 
algorithm with greater probability of the results being reliable. 
In the XCS algorithm, due to the use of random values (e.g. 
random placement of the initial population of classifiers), the 
result for each block is not always the same. So, if we executed 
only a single block, we risked acquiring the exceptionally 
(non)successful block measurement (as a result of the 
randomness involved in the XCS algorithm), which wouldn’t 
be representative. So, with higher block repeats, we could 
provide a range of performance evaluation in the form of an 
interval, where the limits of the interval were determined by 
the most successful and least successful blocks.  

After the execution of each block, all the internal values of 
the XCS algorithm, as well as its supporting programmes, 
were reset to the starting values (reinitialization of all the 
values). This ensured that the knowledge stored in the 

population of the XCS algorithm was not transferred between 
the blocks, and that the execution of the blocks was 
independent of each other. 

Data acquired during the experiment 

During the experiment, the following data were acquired 
(per each block):  

• the consecutive number of the game in which the 
irregularity of the game functionality was first 
discovered,  

• the number of all confirmations of the invalid game 
feature, and 

• the time needed for completion of each block (the 
time measurements provided us with information if it 
was possible to validate the game space in real-time).  

The upper bound of time, where the real-time 
measurement during one block execution is still acceptable, 
was set to a reasonable one minute [32]. 

Parameter settings of the XCS algorithm 

The parameter setting of the XCS algorithm have to be set 
before the XCS cycle begins, and they stay static during the 
execution phase. We set the following values: NP = 100 
(population size), α = 0.1 (learning rate for updating ρ), β = 
0.2 (learning rate for p, ε and f), γ = 0.71(discount factor of 
the reward), δ = 0.1 (below this value, the fitness of a classifier 
may be considered in its probability of deletion, so, in other 
words, it specifies the fraction of the mean fitness in [P]), ε0 
= 10 (the error below which classifiers are considered to have 
equal accuracy), θGA = 25 (GA threshold), θdel = 20 (deletion 
threshold), ν = 5 (power parameter), χ = 0.5 (crossover 
probabilities), μ = 0.01 (mutation probability), θsub = 20 
(subsumption threshold), P# = 0.33 (probability of using a # 
in one attribute in a condition when covering), pI = εI = fI = 0 
(used as initial values in new classifiers), pexp = 0.02 
(exploration probability), [A] subsumption and GA 
subsumption were set to false. 

The values were set during the initial pre-testing of the 
algorithm, with the goal of XCS having the optimal 
performance through hand-settings, but, for now, they weren’t 
optimized by any of the advanced algorithmic methods [33]. 

Map coding Table for the Tic-Tac-Toe 

The condition of classifier and sensory information (input 
of the environment) must be of the same length and of the 
same representation to be comparable. They are both built 
upon the representation of the game map, meaning the 
encoding is done by representing each state of the cell of the 
map in a binary form (Table II). A cell is represented with two 
bits. The two-dimensional map of Tic-Tac-Toe is, after 
completed encoding, presented as a binary vector of the size 
18 (9 cells x 2 bits per cell). 

TABLE II.  MAP CODING TABLE FOR THE TIC-TAC-TOE. 

State of the cell 
Representation in bits (2 bits per 

cell) 

Cell is empty (not occupied) 0 0 

Cell is occupied by a cross (X) 0 1 

Cell is occupied by a circle (0) 1 0 

Non-relevant cell (set with don`t 
care flag in the classifier condition) 

1 1 
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No-loss strategy game feature and its settings for the 
experiment 

To test the validity of the Game Feature, implemented as 
a No-Loss-Strategy method in Appendix A, we must first 
define the conditional statement and its condition (measured 
values are the end state of the game – defeat or tie). They were 
as follows: 

if resultOfTheGame not defeat and resultOfTheGame not tie 
then 

  // game feature is not valid 

end if 

If the result of the game is not defeat and, at the same time, 
it isn’t a tie, the game for the player who plays against the 
NoLossStrategy method resulted in a win (meaning the 
condition is true, and game feature therefore being invalid). 
We pre-tested the implementation of the NoLossStrategy 
method with 100 million playouts by the XCS algorithm, and 
additionally with one million playouts by a basic MCTS 
(UCT) reinforcement learning algorithm [34]. None of the 
playouts resulted in a win (game feature was always valid). 

VII. RESULTS AND DISCUSSION 

We can confirm that the XCS algorithm was successful in 
finding invalid GF caused by bugs in the allotted time, and 
every bug had multiple confirmations per each block, as 
shown in Table III. 

TABLE III.  RESULTS OF THE EXPERIMENT. 

ID  

of the 

bug 

Consecutive 

number of the 

game where XCS 

first confirmed 

invalid game 

feature [min. 

cons. num. of 

most succ. block, 

max. cons. num. 

of least succ. 

block]  

(The lower the 

values the better.) 

The number of 

all 

confirmations 

of the invalid 

game feature in 

the block 

 [min. num. 

conf. of least 

succ. block, 

max. num. 

conf. of most. 

succ. block]  

(The higher the 

values the 

better.) 

Time needed to 

execute the block 

in  

seconds 

 [min. time. of 

most. succ. block, 

max. time. of 

least succ. block] 

(The lower the 

values the better.) 

1. [1, 1784] [38413, 60621] [32.651, 33.893] 

2. [45, 109330] [135, 1200] [29.737, 31.706] 

3. [1, 2] 
[920156, 
930109] 

[23.963, 25.699] 

4. [1259, 504222] [4, 339] [30.819, 33.267] 

5. [20, 17783] [1329, 3240] [30.371, 33.191] 

6. [1, 91558] [65, 154] [30.154, 33.132] 

7. [24, 22855] [254, 470] [29.945, 31.553] 

8. [11, 13322] [3701, 7616] [31.256, 32.602] 

 

The most successful Game Feature validation was the bug 
with the ID 3. The invalidity of the game feature always 
happened on the first or at the second consecutive game run at 
the latest; it reached the highest number of confirmations per 
single block (interval being [920156, 930109]) and in the 
lowest amount of time. The least successful (but still 
successful) game feature validation was at the bug with the ID 
4. Here, the lowest number of confirmations of the invalid 
game feature was four, with the greatest interval range ([1259, 
504222]. Maximum recorded time during the experiment was 

33.893 s, which was well under the limit of one minute of soft 
real-time per block. 

The consecutive numbers and the numbers of all 
confirmations were quite varied between the different inserted 
bugs. This was somewhat expected, because the bugs were 
connected closely to the search-space. Some bugs are more 
common to be found, and some occur rarely during the game, 
meaning only when an XCS algorithm is traversing through 
the niche parts of the game (i.e. only in a few sub-search-
spaces), and that can sometimes take many tries. Nevertheless, 
the XCS algorithm identified the bugs successfully, regardless 
of them occurring in common or niche search space paths, and 
it also confirmed them multiple times per each block. This 
confirms our beliefs that XCS is a suitable candidate for 
testing and research in more complex game spaces and their 
GS. 

VIII. CONCLUSION 

In this paper, we proposed the XCS algorithm for the task 
of Game Feature validation of the real-time game space of 
Tic-Tac-Toe.  The important game feature of No-loss-strategy 
was implemented inside this game space. Then, various bugs 
were inserted into the No-Loss-Strategy method, and tested by 
the XCS algorithm, which was under the supervision of the 
non-invasive validation component. Experiments revealed, 
that XCS identified all the invalid GF successfully, and it did 
so in the real-time that was defined. This serves us as a proof-
of-concept that the XCS algorithm can be a capable tool for 
validation of game spaces, and that it can act in online mode 
(without prior learning knowledge of the environment). 

Therefore, our future work will focus on game genres 
which enclose game spaces of higher computational 
complexity [35]. Specifically, we want to test our 
methodology of Game Feature validation with the XCS 
algorithm on game spaces which include maps of higher 
resolution (e.g. 32 x 32 cells), game actions with more 
diversity (i.e. durative game actions and simultaneous moves), 
and with more than one type of game unit available (i.e. in 
Tic-Tac-Toe the only choice for the player is to “operate” one 
game unit, cross or circle). 

The durative game actions and simultaneous moves are 
some of the main differences between classical board games 
and complex game genres (e.g. Real-Time Strategy games) 
[36]. The XCS algorithm in its current state only outputs one 
best action of its choosing, so it does not support choosing of 
multiple actions simultaneously. Therefore, incorporating 
game actions with higher diversity in the XCS algorithm will 
be challenging.  

We envision creating a game agent, which has its internal 
structure designed for the operation of multiple XCS 
algorithms, and will be capable of handling all the game units 
on the map simultaneously, each with its own distinct actions.  
It will also be necessary for a game agent to incorporate more 
complex syntactic and semantic validations of classifiers, as 
well as a game state evaluation and reward system of higher 
complexity. 

Combining the power of adaptive algorithms, such as an 
XCS algorithm, for the purpose of the playtesting of GF, could 
eventually help with many tasks that are currently manual 
labor intensive in the game design. This way we could 
possibly open ways for not only faster and cheaper creations 
of games, but also for the possibility of creating different 
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varieties of the same game (i.e. validating the same GF with 
different criteria), with a lower number of bugs and higher 
user gameplay satisfaction. 
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